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ARTICLE INFO ABSTRACT

Editor: Jing M. Chen The fine-scale spatial heterogeneity of low-growth Arctic tundra landscapes necessitates the use of high-spatial-

resolution remote sensing data for accurate detection of vegetation patterns. While multispectral satellite and

Keywords: aerial imaging, including the use of uncrewed aerial vehicles (UAVs), are common approaches, hyperspectral
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UAV imaging has not been thoroughly explored in these ecosystems. Here, we assess the added value of
hyperspectral UAV imaging relative to multispectral UAV imaging in modelling plant communities in low-growth
oroarctic tundra heaths in Saariselka, northern Finland. We compare three different spectral compositions: 4-
channel broadband aerial images, 5-channel broadband UAV images and 112-channel narrowband UAV im-

Biodiversity ages. Based on field vegetation plot data, we estimate vascular plant aboveground biomass, leaf area index,
species richness, Shannon’s diversity index, and community composition. We use spectral and topographic in-

formation to compile 12 explanatory datasets for random forest regression and classification.

For aboveground biomass and leaf area index, the highest R? values were 0.60 and 0.65, respectively, and
broadband variables were most important. In the best models for biodiversity metrics species richness and
Shannon’s index R? values were 0.53 and 0.46, respectively, with hyperspectral, topographic, and multispectral
variables having high importance. For 4 floristically determined community clusters, both random forest clas-
sifications and fuzzy cluster membership regressions were conducted. Overall accuracy (OA) for classification
was 0.67 at best, while cluster membership was estimated with an R? of 0.29-0.53. Variable importance was
heavily dependent on community composition, but topographic, multispectral, and hyperspectral data were all
selected for these community composition models. Hyperspectral models generally outperformed multispectral
ones when topographic data were excluded. With topographic data, this difference was diminished, and per-
formance improvements from added hyperspectral data were limited to 0-10 percentage point increases in R?,
the largest occurring in the metrics with lowest R%. These results suggest that while hyperspectral can outperform
multispectral imaging, multispectral and topographic data are mostly sufficient in practical applications in

tundra heaths.
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1. Introduction

Remote sensing tools are vital in monitoring the impacts of climate
and environmental change. In Arctic ecosystems, where amplification
rates of global warming are up to four times the global average (Ran-
tanen et al., 2022), large-scale climate change impacts include general
greening, but closer analysis reveals a multitude of vegetation changes
behind this trend: shrubification, increased growth, increased leaf area,
phenological shifts, and changes in species composition (Bjorkman
et al., 2020; Mod and Luoto, 2016; Myers-Smith et al., 2020). Simulta-
neously, browning trends have resulted from permafrost thaw, fires,
herbivory and erosion (Bjerke et al., 2017; Myers-Smith et al., 2020;
Treharne et al., 2019).

Arctic remote sensing is challenging due to vegetation characteris-
tics, geography and weather. The Arctic is characterised by treeless
tundra of high fine-scale spatial heterogeneity (Dobbert et al., 2021;
Reichle et al., 2018; Virtanen and Ek, 2014). This spatial diversity
complicates measurements and models of, for instance, the carbon cycle
in tundra (Tuovinen et al., 2019), but also remote sensing of vegetation
properties. In spatially heterogeneous tundra landscapes, uncrewed
aerial vehicles (UAVs) with ultra-high spatial resolution enable the
observation of vegetation phenological changes and ecosystem pro-
cesses that are not adequately captured using satellites (Assmann et al.,
2020; Beamish et al., 2020; Danby, 2011; Poley and McDermid, 2020;
Yang et al., 2021). Furthermore, at high latitudes, cloud cover and low
solar angles complicate the use of satellite information (Nelson et al.,
2022). Thus, aerial — whether crewed or uncrewed — imaging is a valid
option, even more so with the proliferation of UAVs, with established
applications in various ecosystems (Nasi, 2021; Rasanen et al., 2020b).
Moreover, the absence of tree cover allows for the visibility of the
ground and field layers, and relatively low species richness reduces the
complexity of community composition, making it possible to apply
close-range remote sensing data in tundra ecosystems. Feasible ecolog-
ical applications include tracking vegetation change and modelling the
spatial distribution of vegetation characteristics, such as community
composition, leaf-area index (LAI), aboveground biomass (AGB) and
photosynthetic capacity through biophysical traits and leaf nutrient
content (Beamish et al., 2020; Danby, 2011; Nelson et al., 2022; Poley
and McDermid, 2020; Rasanen and Virtanen, 2019; Yang et al., 2021).

In the Arctic, productivity and carbon storage metrics AGB and LAI
are the most common vegetation parameters estimated with remote
sensing data (Bartsch et al., 2020; Bratsch et al., 2017; Chang et al.,
2022; Erlandsson et al., 2022; Halme et al., 2019; Orndahl et al., 2022;
Pang et al., 2022; Rasanen et al., 2019a, 2020b). Vegetation structure
properties such as plant functional type (PFT), biodiversity or commu-
nity composition are also relatively well studied (Feilhauer et al., 2021;
Kupkova et al., 2023; McPartland et al., 2019; Rapinel et al., 2018).
While broadband multispectral imaging (MSI) tends to outperform
hyperspectral imaging in estimating productivity metrics (Broge and
Leblanc, 2001; Halme et al., 2019; Poley and McDermid, 2020), the
proliferation of lightweight HSI sensors offers potential for improve-
ments in mapping vegetation diversity and composition (Fassnacht
et al., 2022; McPartland et al., 2019).

Close-range HSI has evolved as an intermediate method between
satellite sensors and hand-held spectrometers but its use has also
introduced new challenges. The continuously changing, layered, and
overlapping mosaic of species in landscapes constrains the practical
differentiability of vegetation patterns, and a high spatial resolution
means that highly local and variable features such as shadows have a
significant influence on spectral response (Adao et al., 2017; Banerjee
et al., 2020), even more so in the Arctic where tree canopy cover is
intermittent at best. Assmann et al. (2019) identified differences among
sensors and sensor units, changes in ambient light (weather and position
of sun), and spatially constraining the imagery as three main sources of
error in UAV MSI, and these can be generalised to UAV HSI as well.
Moreover, HSI data processing procedures differ from MSI and are
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markedly more complex, and thus more labourious and more error-
prone (Nex et al., 2022). In principle, however, HSI should deliver
everything MSI does and more.

Arctic studies in close-range HSI have explored various vegetation
and environmental properties, but results are somewhat contradictory,
depending on the specific properties being examined. In a large-scale
look at tundra, Nelson et al. (2022) demonstrated high spectral di-
versity over relatively small scales, indicating potential utility for HSI in
differentiating between vegetation at close range. Liu et al. (2017)
showed that narrowband HSI vegetation indices (VIs) slightly out-
performed broadband MSI VIs in estimating green cover in a High Arctic
mostly mesic tundra. In alpine grassland tundra, Kupkova et al. (2023)
demonstrated high performance for estimating dominant species cover
by both MSI and HSI at ultra-high resolutions, with no performance
improvement from HSI. In Arctic peatlands, Rasanen et al. (2020b)
employed 28 hyperspectral bands and reported their limited added
value when predicting AGB, LAIL, and PFTs, while McPartland et al.
(2019) found high utility in HSI for mapping functional composition and
species diversity. Turner et al. (2019) found that an ideal sensor for
mapping Antarctic moss cover would be a hyperspectral sensor with 25
visible and NIR bands. These examples demonstrate the heterogeneity of
tundra systems and the non-universality of optimal remote sensing ap-
plications and thus the need to examine the applicability of HSI solutions
in specific contexts. Thus, here, we examine the potential of HSI to
improve the predictability of shrub heath tundra vegetation community
properties — in particular, productivity metrics AGB and LAI, biodiver-
sity metrics and community composition — relative to broadband MSI
acquired with UAVs.

Globally, research has indicated that broadband VIs that utilize near-
infrared (NIR, 700-1300 nm) reflectance (Huete, 2012) are closely
correlated with AGB and LAI (Cunliffe et al., 2022; Sundqvist et al.,
2020). Indeed, HSI has typically not been found to add value to pro-
ductivity estimation (Broge and Leblanc, 2001; Halme et al., 2019).
However, the NIR VI-productivity relationship has been disputed in the
tundra, where the degrees of correlations depend on the specific plant
composition (Cunliffe et al., 2020; Rasanen et al., 2021b). Instead of
using spectral data, some studies have modelled canopy height and
structure to estimate productivity parameters. For example, Cunliffe
et al. (2020) reported that canopy height models (CHMs) have signifi-
cantly higher predictive capability of AGB than spectral VIs in shrub
tundra, a result echoed by Villoslada et al. (2023).

Regarding biodiversity, studies outside the Arctic (Madonsela et al.,
2017; McPartland et al., 2019; Palmer et al., 2002; Rocchini et al., 2010)
have suggested that spectral diversity correlates with species diversity,
though the validity of this spectral diversity hypothesis has been ques-
tioned (Fassnacht et al., 2022; Wang and Gamon, 2019). Nonetheless,
there has been little research in the Arctic landscapes regarding the
estimation of biodiversity from spectral properties.

Finally, characterizing terrestrial vegetation community composi-
tion is also a common remote sensing task. In principle and in some
demonstrations, HSI can improve the estimation of vegetation compo-
sion (e.g., McPartland et al., 2019), which is also strongly dependent on
topography (Haapasaari, 1988; Oksanen and Virtanen, 1995). Topog-
raphy, ranging from elevation to micro- and macro-topographic fea-
tures, is indeed often an important factor in successful remote-sensing-
based vegetation mapping (Dobbert et al., 2021; Mekonnen et al.,
2021; Villoslada et al., 2023). While discrete differentiation between
vegetation types is typical both in characterization of plant communities
(Haapasaari, 1988; Oksanen and Virtanen, 1995; Paakko et al., 2018)
and in land cover mapping (Ju et al., 2005), there are intuitive and
empirical reasons for the use of fuzzy classification and gradient map-
ping, particularly in species-poor environments (Feilhauer et al., 2021;
Rapinel et al., 2018; Rasanen et al., 2020a; van der Merwe et al., 2023).
Fuzzy classifications more accurately reflect the reality of plant distri-
butions and can be readily used to create crisp classes if necessary. At the
same time, the relationship between fuzzy classes and floristic gradients
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on one hand, and spectral properties on the other, can be difficult to
generalise due to its strong dependence on the specific classification and
determination of those gradients. For example, the use of ordination
axes in gradient mapping (Feilhauer et al., 2021; Rasanen et al., 2020a)
makes more sense the more those ordination axes correspond to iden-
tifiable ecological properties such as moisture and nutrient availability.

Overall, understanding of the applicability and advantages of UAV
HSI to detect Arctic tundra vegetation characteristics remains limited.
To address this gap, we ask: (1) How does HSI impact the predictability
of plant community attributes relative to MSI? (2) How does the
importance of different kinds — topographic, MSI, and HSI - of explan-
atory data change when modelling different responses? Increased
spectral information from HSI can enable better differentiation between
taxa and thus better estimation of vegetation composition and diversity
than MSI. However, the importance of NIR and vegetation structure for
productivity estimation suggests that HSI may not provide benefits in
this area. Thus, we hypothesise that hyperspectral data improve the
predictabilities of tundra plant community composition and diversity
attributes (species richness and Shannon’s index), but not productivity
metrics (AGB and LAI). We expect topographic data to be particularly
important for community composition, MSI to be most important for
productivity and HSI to be important for both composition and diversity.

2. Materials and methods

We used various aerial remote sensing data, including 4-band crewed
aerial MSI, 5-band UAV MSI, and 112-band UAV HSI, and an aerial lidar-
derived digital elevation model (DEM) to predict vascular plant pro-
ductivity (AGB, LAI), biodiversity (species richness, Shannon’s diversity
index; Shannon, 1948), and fuzzy and discrete plant community cluster
membership in an oroarctic tundra landscape in northern Finland. We
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combined the remote sensing data into 12 explanatory datasets to pre-
dict field-observation-based vegetation characteristics using random
forest models (Fig. 1).

2.1. Research site

The research site is located on the north and east faces of Niilanpaa
fell in the Saariselka fell range in the Urho Kekkonen National Park in
northern Finland (68.34° N, 27.55° E; 335-485 m a.s.l.; Fig. 2). The
landscape is mostly dry shrub tundra heath (characterised by evergreen
shrubs such as Empetrum nigrum ssp. hermaphroditum), with occasional
more moist areas (characterised by deciduous shrubs such as Vaccinium
myrtillus) and blockfields devoid of vegetation other than crustose li-
chens. Towards the lower range of elevations, the landscape gradually
turns into a sparse treeline forest, with occasional Scots pines (Pinus
sylvestris) and local variants of mountain birch (Betula pubescens ssp.
czerepanovii var. appress), which grow as tall shrubs or small trees.

2.2. Field data

Field data were collected in summers 2020 and 2022 by sampling
n =202 0.5 x 0.5 m vegetation plots (Fig. 2). Field surveys were timed
to correspond approximately to the peak of the growing season from
mid-July to early August. In 2020, n = 108 plots were randomly placed
around three areas within the study site and surveyed Aug 3-7. In 2022,
n = 70 plot locations were chosen by randomly selecting locations from
a grid of regularly placed points in the research area and surveyed Jul
18-21. In addition, in 2022, n = 24 plots were surveyed Aug 1-4 around
three relatively lush vegetation areas at the south end of the study site
due to the experimental setup of another study. Field data from 2020
and 2022 were combined into a single response dataset, as interannual
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Fig. 1. Data inputs and processing steps of the models for plant community property prediction. DEM: digital elevation model; MSI: multispectral imaging; UAV:

uncrewed aerial vehicle; HSI: hyperspectral imaging; RS: remote sensing.
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Fig. 2. A map showing the location of the study site (A), the distribution of vegetation plots and the extent of UAV imagery (B) and a landscape photo of the area (C;
July 14, 2019; courtesy of T.V.). Plot sizes are not to scale. Orthophoto and topographic map are from the National Land Survey of Finland.

variability in these evergreen-perennial-dominated shrublands is small
(Paakko et al., 2018).

Vegetation plots were aligned cardinally using a compass. Plots were
photographed (Fig. 3) for later reference and the location of each plot
was recorded using a Trimble R10 (Trimble, Westminster, CO, USA)
GNSS RTK receiver (horizontal precision for all points < 2 cm). For each
plot, vascular plant, moss, and lichen species were identified, their
%-cover was visually estimated, and the mean height of vascular plants
was measured with a ruler. Bryophytes and lichens were not consistently
identified to species level and were later grouped into three categories:
bryophytes, reindeer lichens, and other lichens. To ensure consistency,
part of the field surveyers were present both in the 2020 and 2022
campaigns.

From %-cover and height information, vascular plant AGB and LAI
were estimated using regression equations by plant functional type
(PFT; Table 1). This approach, which has been employed in similar
lanscapes previously (Rasanen et al., 2019a, 2020b, 2021b) and has the
benefit of reducing the amount of field work required, but as any
regression model, underestimates the true variance in AGB and LAI
patterns. For this study, we curated a selection of field samples from
three previous field campaigns in treeless environments in Northern
Finland and selected the best-performing linear regression models,
based on root-mean-square error. For many of the PFTs, AGB and LAI
estimates relied solely on %-cover information, likely due to the ho-
mogenous low height of vegetation. While this means that AGB and LAI
estimates are close to being linear combinations of %-cover information,
they are preferable metrics from an ecological mapping point of view, as
they have direct relevance to, for example, the carbon cycle (Turner
et al., 2004). Bryophytes and lichens were excluded from these esti-
mations due to their relatively low visibility below other vegetation
layers and low prediction accuracy in regression models (Rasanen et al.,
2020b).

Vascular plant biodiversity was quantified using species richness S
and Shannon’s diversity index H (Shannon, 1948). S (i.e., the number of
vascular plant species present in each plot) was directly extracted from
field observations, and H was calculated as:

H= - Zpiln(pi)’
where

G
pi = C

where C; and C; were species coverage and total coverage in the plot,
respectively.

Vegetation was also divided into fuzzy community clusters in an
unsupervised process by: 1) non-metric multidimensional scaling into
four floristic gradients based on Bray-Curtis dissimilarity using the
vegan package in R (Bray and Curtis, 1957; Minchin, 1987; Oksanen
et al., 2022; R Core Team, 2021); and 2) fuzzy k-medoids with noise
clustering using the fclust package (Ferraro Brigida et al., 2019). The
number of clusters k was determined based on cluster validity indices for
2-10 clusters and by qualitatively examining the species composition in
each cluster and assessing whether the results corresponded with field
experiences. The result of fuzzy clustering for each resulting cluster was
a cluster membership value (1, € [0,1], where 3°¢_, 4 = 1), as well as a
discrete cluster assignment, based on highest membership value. Intui-
tively, fuzzy clustering corresponds more closely to real plant commu-
nities than discrete clustering since clusters can co-occur, in addition to
which it has been found to improve mapping accuracy (Feilhauer et al.,
2021; Rapinel et al., 2018).

2.3. Remote sensing data

Remote sensing data consisted of spectral and elevation data pro-
duced by the National Land Survey of Finland (NLS) and data collected
with UAVs. Spectral data were divided into three categories: 1) 4-band
moderate-altitude aerial orthophotos, which are available across
Finland, produced by the NLS; 2) 5-band UAV MSI; and 3) 112-band
UAV HSI. Additionally, elevation data from the NLS (lidar-based raster
with 2 m resolution, measured for the study area on June 28, 2011) were
used.
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Fig. 3. Images of four vegetation plots, showing different vegetation in the study area and the dominant species. The plots represent A) a moist site, with Vaccinium
uliginosum and graminoid species (Aug 4, 2020); B) a dry, Calluna vulgaris-dominated rocky site (Jul 19, 2022); C) a relatively moist and nutrient-rich site, with
relatively tall specimen of Vaccinium myrtillus and lush Empetrum nigrum ssp. hermaphroditum (Jul 19, 2022); D) a somewhat dry site, characterised by Betula nana and

Arctous alpina (Jul 19, 2022).

NLS imagery included red, green, blue and NIR bands and had a pixel
size of 0.5 x 0.5 m2. The most recent images for the studied area were
taken on July 23, 2016. The NLS produces 4-band orthophotos across
Finland at regular intervals and we used the most recent imagery for our
site. The sensor, imaging, and processing details are not published
(National Land Survey of Finland, n.d). Although these kinds of images
are processed for visual interpretation, not reflectance measurement,
they have been found to have validity in index-based computational
productivity assessment (Erlandsson et al., 2019).

UAV multispectral imaging (MSI) was conducted in 2020 (August 3)
and 2022 (July 21), using the MicaSense RedEdge-M and MicaSense
RedEdge-MX sensors (AgEagle Aerial Systems Inc., Wichita, KS, USA),
respectively. MSI consisted of 5 bands: blue, green, red, red edge and
near infrared with the same central wavelengths but slightly different
bandwidths (Table 2). Radiometric calibration for MSI was undertaken
using a Micasense Calibrated Reflectance Panel with known reflectance
(blue = 46.97%, green = 47.18%, red = 47.21%, red edge = 47.20%.
NIR = 47.12%). Before and after each flight, an image of the reflectance
panel was taken. Further, a Downwelling Light Sensor (DLS 2) placed on
top of the UAV was used to record sun irradiance and sun angle for each

of the five bands. The information from the calibration panel and the
DLS2 sensor was used in Agisoft Metashape 1.7.2. (Agisoft LLC, St.
Petersburg, Russia) to radiometrically correct the multispectral mosaics
and account for variations in light conditions during the flights. In 2020,
flight altitude was constant above takeoff, leading to real altitudes of ca.
60-200 m and ground sampling distances (GSDs) of 5-13 cm, while in
2022, altitude was constantly 100 m above terrain, with GSD 7 cm. We
assumed that differences in GSD did not significantly impact the per-
formance of these datasets, as spectral data were sampled at plots mainly
as means and differences resulting from UAV imaging GSD have been
found to be small (Steenvoorden et al., 2023). Georeferencing was
conducted using ground control points and real-time kinematic posi-
tioning on-board UAVs, and final horizontal accuracy of mosaics was
<5 cm.

UAV hyperspectral images (HSI) were collected on July 21, 2022
using a Specim AFX10 sensor (Specim, Spectral Imaging Ltd., Oulu,
Finland). GSD ranged ca. 10-19 cm due to constant flying altitude above
sea level and varying terrain elevation above sea level. The spectral
range of the sensor was 400-1000 nm with a 5.5 nm spectral resolution.
Spectral binning was set to 4 to produce 112-band images, so that the



P. Putkiranta et al.

Table 1

Equations used for estimating aboveground biomass (AGB, gm~2) and leaf area
index (LAI) for different functional groups of tundra plants. C refers to %-cover
and H to height. Tested explanatory variable combinations were {C}, {CH} and
{C,H} and equations were determined following methodology outlined by
Rasanen et al. (2019a) on data from Finnish sites in Kaamanen (Kou et al., 2022),
Pallas (Résdnen et al., 2021a) and Sodankyla (Résanen et al., 2020b).

Plant functional n Metric  Equation R? RMSE
type (PFT)
Evergreen dwarf 103 AGB 4.2732+ 2.75C 0.68  36.99
shrubs LAI 0.0202169 + 0.74  0.10
0.0087463C
Deciduous dwarf 46 AGB 1.8423 + 2.4306C + 0.84 2091
shrubs 1.4118H
LAI —0.020214 + 0.76  0.17
0.0193134C
Betula nana 45 AGB 2.209027 + 0.73 37.98
0.160556CH
LAI 0.0047927 + 0.59 0.06
0.0077365C
Forbs & 73 AGB —0.392171 + 0.63 15.21
pteridophytes 0.083511CH
LAI — 0.01987 + 0.78 0.14
0.001125CH
Graminoids 105 AGB — 1.4051 + 0.6973 + 0.44 24.28
1.0906
LAI —0.015802C + 0.44  0.17
0.00585C + 0.006981H
Table 2

MicaSense RedEdge-M and RedEdge-MX band centers and bandwidths (Mica-
Sense, 2020).

Band Center RedEdge-M bandwidth RedEdge-MX bandwidth
(nm) (nm) (nm)
Blue 475 20 32
Green 560 20 27
Red 668 10 16
Red edge 717 10 12
Near 842 40 57
infrared

difference between central wavelengths was 5.4 nm, close to the spectral
resolution. Binning also reduced data load and processing times and
improved signal-to-noise ratio. In order to compare sensor performance
and in addition, HSI was spectrally resampled to correspond to RedEdge-
MX bands (Table 2), assuming a Gaussian response. Resampling was
performed using the spectralResampling function of the hsdar
package in R (Lehnert et al., 2019).

For HSI, 3 radiometric calibration panels (0.5 x 0.5m?, reflectance 2,
9, and 46%; Altisense Ltd., Pori, Finland) were placed in the landscape.
Reflectance conversion was conducted with the empirical line calibra-
tion method (Fig. 4).

Image data were sampled at each field observation plot using the
exact_extract function of the exactextractr package (Daniel
Baston, 2023) in R. Both means and variances were extracted for each
MSI and HSI band but only means for NLS airborne data, since the 0.5 m
resolution corresponded with the plot size. Variances represented
spectral variability in each plot to test their usefulness particularly in
predicting biodiversity metrics. Additionally, seven spectral indices
were calculated for NLS images, eight for MSI and spectrally resampled
HSI, and 100 for HSI to reduce the complexity of multidimensional
reflectance information (full descriptions and references for indices are
available in Supplementary Information SI 1). For HSI, first derivatives
were calculated. For MSI and spectrally resampled HSI, a limited num-
ber of common indices were chosen while, in contrast, all applicable
vegetation and soil indices available in hsdar were computed for HSI.
Thus, the number of explanatory variables computed from MSI was 18
while it was 435 from HSI. From the elevation model, topographic
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Fig. 4. Hyperspectral reflectance spectra at calibration panels (2-46%) and a
typical E.-hermaphroditum-dominated spot in the scene. Spectra were obtained
by weighted averaging over small (< 0.2m?) hand-drawn areas at
selected locations.

position indices (TPI) with neighbourhood distances of 5, 10, 20, 50, and
100 m (Guisan et al., 1999) and the topographic wetness index (TWI;
Bohner and Selige, 2006) were calculated using SAGA-GIS (Conrad
et al., 2015).

2.4. Statistical modelling

Before model building, field and remote sensing data from different
years were evaluated for compatibility based on seasonality as measured
by accumulated thermal units (ATUs) and precipitation and by cross-
modelling some responses (SI 5). Based on these results and our
experience-based understanding and earlier evidence of small interan-
nual variability in our study site (Paakko et al., 2018), the field and
remote sensing data were modelled together.

To assess differences in the explanatory power of MSI and HSI, as
well as the importance of topographic information, remote sensing data
were compiled into 12 different explanatory datasets: 1) elevation data
and derived topographic indices only (T); 2) NLS 4-band multispectral
and topographic data (NLS); 3) multispectral data from 2020 (M20); 4)
M20 with topographic data (M20T); 5) multispectral data from 2022
(M22); 6) M22 with topographic data (M22T); 7) two-year multi-
temporal multispectral data and topographic data (MMT); 8) hyper-
spectral data (HS); 9) HS and topographic data (HST); 10) hyperspectral
data spectrally resampled to match MSI data (HM); 11) HM and topo-
graphic data (HMT); and 12) all original spectral and topographic data
(All) (Table 3 for details). Datasets were compiled based on spectral and
spatial resolution and the inclusion of topographic data, as well as cases,

Table 3

Explanatory datasets based on remote sensing. Dataset names beginning with M
are UAV MS], while those beginning with H are UAV HSI, and those with HM are
HSI data spectrally resampled to correspond to MSI. T signifies that topographic
data was included, and NLS is the National Land Survey of Finland, who pro-
duced crewed aerial orthophotos.

Name Imaging year(s) NLS MSI HSI HM T
T - - - - - X
NLS 2016 X - - - X
M20 2020 - X - - -
M20T 2020 - X - - X
M22 2022 - X - - -
M22T 2022 - X - - X
MMT ’20, ‘22 - X - - X
HS 2022 - - x - -
HST 2022 - - X - X
HM 2022 - - - X -
HMT 2022 - - - X X
All 16, '20, '22 X X X X X
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where data availability was limited to one type of sensor or publicly
available data. Data were also combined in datasets MMT and All to
assess possible benefits from multitemporal data and fusion between
MSI and HSI.

Ecological metrics' (AGB, LAIL vascular plant species richness,
Shannon’s diversity index for vascular plants, and community cluster
classification and membership) were estimated from these datasets
using random forest machine learning models (Breiman, 2001). Random
forests are considered resistant to overfitting (Breiman, 2001) and their
use in remote-sensing ecology is well-established (e.g., Hall and Lara,
2022; Rasanen et al., 2020a; Turner et al., 2019). Due to the large
number of derived variables, such as topographic and spectral indices,
there was high redundancy in our datasets. Thus, the number of
explanatory variables was reduced using VSURF (Genuer et al., 2015), a
random-forest-based variable selection algorithm. The algorithm works
by: 1) ranking variables by importance and eliminating irrelevant var-
iables; 2) building a sequence of models with the most important, two
most important, etc. variables and selecting those that construct the best
model; and 3) testing different combinations of variables and choosing
the least erroneous combination (Genuer et al., 2015). Since random
forests employ stochastic processes, results for variable selection vary on
different executions of the algorithm. Therefore, the final variable se-
lection was based on 10 executions of the VSURF algorithm. While this
approach is counterintuitive with regards to the redundancy-reducing
process of VSURF, it was found in preliminary modelling runs to pro-
vide the best performance (SI 2).

In the final random forest models after VSURF, the random forest
parameter mtry, which determines the number of variables randomly
selected for testing the split at each node of the decision trees, was tuned
using the tuneRF function in the randomForest package (Liaw and
Wiener, 2002). The function first tries \/n variables, where n is the total
number of variables in the model, and then iteratively increases and
decreases this number, stopping in each direction when errors increase.
Such a parameter value was chosen that yielded the minimum mean
square error. Next, 100 random forests were built for each dataset and
they were evaluated using mean values of the out-of-bag estimate of the
percentage of variance explained (R%, R? = 1— Tarlyy where y is the
response) and range-normalised root-mean-square error (nRMSE) for
regression models, and using overall accuracy (OA), fuzzy overall ac-
curacy (fOA) and both hard and fuzzy confusion matrices (Binaghi et al.,
1999) for classification models. Instead of separating the data for cross-
validation, out-of-bag model metrics were used as these have been found
to be valid and even conservative estimates of model performance (Clark
et al., 2010). Fuzzy confusion matrix X values were defined as x;; =
Z?;lzfgl (mjlee = i), where i and j are rows and columns, respectively,
n. is the number of clusters, m is the membership value or vote share for
regression and classification, respectively, and c; is the “true” cluster for
each plot.

The relative importance of variables was evaluated using an
expression of increase in root-mean-square error (relative to the
response mean) if the variable in question was randomly permuted.
Importance values were retrieved from a final random forest built using
chosen variables for each predictor-response combination. Finally,
models built with dataset All were used to predict plant community
characteristics across the entire imaged area, and models built with
datasets M22T and HST were used to predict productivity and diversity
metrics for direct comparison between MSI and HSI. For prediction,
image and topographic data were resampled to a 0.5 x 0.5 m resolu-
tion. This was necessary to calculate comparable spectral variance to the
training data, in addition to which it reduced computational costs in
prediction significantly and corresponded to the size of vegetation plots.

1 On vocabulary: we describe response variables as metrics and explanatory
variables as variables for clarity.
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3. Results
3.1. Plant community properties

A total of 37 vascular plant species were identified, along with 26
bryophyte taxa and 30 lichen taxa. The most common species were
Empetrum nigrum ssp. hermaphroditum, Vaccinium vitis-idaea, V. myrtillus,
Betula nana, and Calluna vulgaris, of which all but V. vitis-idaea were
dominant species in their respective communities (Table 4). V. vitis-idaea
occurred almost universally but as very small individual plants (mean
height 3.3 cm and mean %-cover 3.4% of a vegetation plot). Quantita-
tive descriptions of the species (SI 3) showed how some
(E. hermaphroditum and V. vitis-idaea) were universally present, while
others (B. nana, C. vulgaris, V. uliginosum, and B. pubescens in particular)
appeared only occasionally but had relatively high abundance when
they did. Mean vegetation height across all plots was 6 cm.

Based on non-metric multidimensional scaling and fuzzy clustering,
four plant community clusters were defined (Table 4; Fig. S.1). In a
qualitative assessment of the discretised clusters, 1 and 2 were wetter,
containing more bryophytes as well as graminoids and V. uliginosum and
myrtillus. Meanwhile, clusters 3 and 4 encompassed more plots, and
were characterised by E. nigrum and lichens, and C. vulgaris, respec-
tively. Discretised clusters were also differentiated to varying extents by
AGB, LAL and biodiversity metrics. These properties were quite nor-
mally distributed overall, with variation across the clusters (Fig. 5).
Clusters 2 and 3 had distinctly high and low biodiversity, respectively,
while 1 and 4 had similar medium biodiversity values. AGB and LAI
were the lowest in cluster 3 and the highest in cluster 4. In other re-
spects, the clusters were less differentiable. The fuzzy nature of clus-
tering blurred lines between the different clusters, not just in terms of
cluster membership but other characteristics as well.

3.2. Remote sensing models

Model performance varied greatly across responses (R2 0.29-0.65 for
the best-performing dataset All) and across datasets (R? 0.00-0.65 for
the best-performing response LAI; Table 5). Best performing data were
generally — with exceptions — fusions of multiple image and topographic
data. Generally, topographic data increased performance more for MSI
than for HSI, and without topographic data HSI outperformed MSI for
almost all metrics, and with topographic data performance was, on the
whole, approximately equal. Multitemporality slightly improved MSI
performance (dataset MMT), especially for biodiversity metrics. Vari-
able selection results agreed with these results (Table 6 for fusion dataset
All, SI 2 for others), showing that MSI, HSI and topographic data were all
important for some responses, though the relationship between predic-
tor and response varied from seemingly linear to more complex (SI 7).

Better performing models exhibited less noise and their regression
line slopes were closer to 1 in the predicted-observed plots (Fig. 6 for
dataset All, SI 8 for others). These plots also show that cluster mem-
bership models are generally more noisy than productivity or biodi-
versity models, as shown in generally larger error values.

3.2.1. AGB and LAI

The best regression model performance was achieved for LAI with
dataset All, yielding R? 0.65 and nRMSE 0.09 (Table 5). For productivity
metrics AGB and LAI, all MSI and HSI datasets performed similarly
(R? > 0.5), with the exception of spectrally resampled HSI, which
underperformed relative to MSI. There was only a limited benefit from
the inclusion of topographic data, and limited or no benefits from
multitemporal or multisensor data fusion. Topographic data alone per-
formed poorly (R%2 <0.14), as did lower-spatial-resolution aerial MSI
(R? < 0.22). Model performances were echoed in variable selection re-
sults (Table 6).
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Table 4
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Properties of plant community clusters as defined when plots were assigned to clusters for which they had the highest membership value. By a qualitative assessment of
clustering, cluster 1 corresponded to the most moist and lush areas in the landscape, and cluster 2 was somewhat drier. Cluster 3 was the most common, and included
the most commonly occurring species, Empetrum nigrum ssp. hermaphroditum and Vaccinium vitis-idaea. Cluster 4 was quite clearly demarcated by Calluna vulgaris, which
was consistent with field observations. AGB: aboveground biomass; LAIL leaf area index; S: species richness; H: Shannon’s diversity index. AGB, LAI, H and height are

reported with standard deviation.

D Indicators Plots Mean AGB (g) Mean LAI Median S Mean H Mean height (cm)
1 V. uliginosum, bryophytes 40 180 =83 0.82+0.43 6 1.14+0.34 6+5
2 V. myrtillus, A. flexuosa, B. nana 32 170 +57 0.75+0.28 8 1.56 +0.25 6+3
3 Lichens, reindeer lichens, E. hermaphroditum, V. vitis-idaea 77 153 £81 0.66 +0.41 4 0.83+0.31 5+6
4 C. vulgaris 53 216 + 58 0.88+0.29 6 1.14+0.35 6+4
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Fig. 5. Aboveground biomass (AGB), leaf area index (LAI), vascular plant species richness (S), and Shannon’s diversity index (H) distributions across plots. On the
bottom row are all plots, and on four other rows, those plots most likely to belong to each of four community clusters. AGB and LAI are determined according to

models detailed in Table 1. Clusters 1-4 are described in Table 4.

3.2.2. Biodiversity metrics

Biodiversity metrics S and H were both best estimated with multi-
temporal MSI and topographic data (R? 0.53 and 0.46, respectively).
One-off MSI and HSI performed similarly, though again spectrally
resampled datasets HM and HMT underperformed, though only slightly
for S. Topographic data were important, boosting R? values by
0.03-0.26. Notably, topographic data provided the smallest boost for
HSI, and HS was the best-performing dataset without topographic data
(R2 0.46 and 0.36, respectively).

3.2.3. Cluster membership and classification

Community cluster classification and membership regression models
had mixed results (for a comparison of community cluster classification
and cluster membership regression, see SI 9). For C1 membership, HSI
provided the largest boost in model performance with R? 0.1 greater
than the best-performing MSI dataset, but model performance was
overall very low, peaking at 0.29 for datasets HST and All. For C2 and
C3, fusion datasets performed best, and performance was better
throughout than for C1. HST performed best for C4. For all cluster
membership regression models, topographic information boosted R? by
0.02-0.35, and topography-only models often outperformed pure
spectral models, particularly MSI models. HS was universally the best-
performing topography-exclusive model. In classification models,
fusion datasets performed best, with maximum overall accuracy 0.67,

though maximum fuzzy OA was only 0.53.

Classification performance was further evaluated with hard and
fuzzy confusion matrices (Tables 7-8, SI 10). In the fuzzy confusion
matrix, the numbers represent the summed proportion of votes in the
random forest given to each observed class. Especially fuzzy classifica-
tion accuracy was poor (<0.4) for clusters 1 and 2, while clusters 3 and 4
were better predicted. The fuzzy confusion matrix reveals, for example,
that plots in cluster 3 were often given high membership in C1, which
was the main cause of low user’s accuracy for C1.

3.3. Prediction maps

In the vegetation characteristic maps constructed with dataset All
(Fig. 7), AGB and LAI showed the largest spatial variance and were
closely positively correlated (Pearson correlation coefficient PCC 0.91,
Table 9). S and H had less spatial variance and also clearly correlated
with each other (PCC 0.66). Regarding community clusters, the best-
predicted cluster C3 dominated the study site, with gaps being filled
by C1 and C4. The maps of the wettest clusters C1 and C2 correlated with
the productivity and biodiversity metric maps, as did the Calluna-
dominated cluster 4 maps. Regression- and classification-based cluster
maps had clear differences: less pixels were classified into cluster 2 in the
classification map and more to cluster 4; classifier voting maps showed
the benefits of classifier-based fuzzy membership by exhibiting greater
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Table 5

Performance metrics for all models, with the best performing model bolded for each metric. Explanatory datasets (Table 3) are on the vertical axis while modelled metrics are on the horizontal axis. R? is variance

explained, nRMSE is range-normalised root-mean-square error, OA is overall classification accuracy, and fOA is fuzzy overall accuracy. In dataset names: T: topographic data; NLS: data produced by the National Land
Survey, including 4-band aerial orthophotos and topographic data; M: UAV MSI from 2020, 2022, or both (MM); HS: UAV HSI; HM: UAV HSI spectrally resampled to correspond to UAV MSI; All: all data.Response metrics:

AGB: aboveground biomass; LAI: leaf area index; S: vascular plant species richness; H: Shannon’s entropy for vascular plants; C1-C4: fuzzy community cluster membership for clusters 1-4; Class: community cluster

classification.

Mean

Class

C4

Cc3

Cc2

Cl

LAIL

AGB

R? nRMSE R? nRMSE R2 NRMSE R? nRMSE R? nRMSE R? nRMSE R? nRMSE R2 nRMSE OA fOA R? nRMSE

Dataset

0.17
0.17
0.16
0.15
0.17
0.15
0.15
0.16
0.15
0.18
0.16
0.14

0.25
0.26
0.34
0.44
0.30
0.43
0.45
0.41
0.45
0.22
0.38
0.48

0.42
0.50
0.46
0.48
0.35
0.50
0.53
0.41
0.48
0.24
0.50
0.54

0.59
0.64
0.62
0.63
0.54
0.65
0.66
0.58
0.63
0.46
0.65
0.67

0.18
0.18
0.19
0.17
0.20
0.18
0.17
0.18
0.16
0.22
0.18
0.16

0.32
0.32
0.26
0.43
0.18
0.34
0.43
0.34
0.45
—-0.03
0.32
0.44

0.26
0.26
0.27
0.24
0.29
0.24
0.24
0.26
0.24
0.31
0.24
0.23

0.42
0.41
0.37
0.50
0.28
0.49
0.50
0.39
0.50
0.13
0.47
0.53

0.14
0.15
0.16
0.14
0.16
0.14
0.14
0.14
0.14
0.15
0.14
0.13

0.34
0.29
0.24
0.34
0.19
0.38
0.35
0.38
0.40
0.26
0.38
0.44

0.18
0.18
0.18
0.17
0.19
0.18
0.18
0.17
0.16
0.19
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0.16

0.17
0.17
0.10
0.19
0.07
0.17
0.16
0.27
0.29
0.04
0.18
0.29

0.16
0.16
0.16
0.14
0.16
0.15
0.14
0.15
0.14
0.16
0.15
0.14

0.24
0.26
0.26
0.41
0.27
0.37
0.46
0.36
0.39
0.22
0.33
0.43

0.11
0.11
0.11
0.10
0.12
0.10
0.09
0.10
0.10
0.11
0.10
0.10

0.38
0.42
0.39
0.49
0.23
0.49
0.53
0.46
0.49
0.33
0.47
0.50

0.15
0.15
0.10
0.10
0.09
0.09
0.09
0.10
0.10
0.11
0.11
0.09

0.00
0.01
0.56
0.57
0.63
0.63
0.63
0.55
0.55
0.46
0.47
0.65

0.20
0.19
0.15
0.13
0.15
0.14
0.14
0.14
0.14
0.17
0.16
0.14

0.14
0.22
0.53
0.60

NLS

M20

M20T
M22

0.52
0.54
0.56
0.54
0.54
0.38
0.42
0.59

M22T
MMT
HS

HST
HM

HMT
All
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variance and contrast relative regression membership; and the classifier
maps were less “noisy” in the sense of containing larger homogenous
areas. However, though these maps were neater, there was no evidence
that they corresponded more accurately with the vegetation on ground —
indeed, for estimating the floristically determined cluster membership,
regression models outperformed classification vote shares (Tables 5,
S.18). In the maps for C2 and AGB, there were some no-data pixels,
which were caused by a bug producing no-data values in the calculation
of the modified red edge inflection point (mREIP) raster from HSI. Since
no-data values were only present in the mREIP map of the entire area,
and not in training data, this issue was deemed aesthetic and ignored.

When comparing maps produced by MSI and HSI (topographic data
included; Fig. 8), differences between predicted AGB and LAI were
small, though MSI exhibited more variance through higher highs and
lower lows, whereas more pronounced differences can be seen in S and H
maps. In particular, the M22T species richness map (selected variables
Ratio22, DEM and TPI-50) showed large dependence on elevation,
which rises towards the south-west corner in these maps, an effect which
was likely overfitted, since the relationship between elevation and
species richness in this site was non-obvious (Fig. S.4). The HST species
richness model had more explanatory variables than M22T species
richness models; therefore, though elevation was included as a predictor
in the HST model, the model was more robust for species richness and
the elevation effect could not be seen. Even so, model performance
metrics were the same for species richness for M22T and HST. For
Shannon’s index, the M22T map again showed greater variance, though
model performance was 2 pp. better for HST.

4. Discussion

Based on our results, HSI improves the predictability of some tundra
plant community characteristics relative to MSI. However, when topo-
graphic data are included, there is little difference in the performance
between HSI- and MSI-based models. An exception in this trend are
community cluster membership regressions for clusters 1, 2 and 4,
where HSI and topography models have 10, 2 and 2 percentage points
(pp) higher R?, respectively, and 1 pp. lower nRMSE than MSI and
topography models. Further, fusion models — combining HSI with mul-
titemporal MSI and topographic data — boost R? for LAI, C2 and C3 by 2,
4 and 3 pp., respectively. While topographic data close much of the
performance gap between MSI and HSI, this does not mean that spectral
data can be replaced by topographic data, because topographic and
spectral data provide very different information about the landscape.
Our results indicate that the choice of imaging system and plan should
depend on the modelled plant community property; while MSI is better
for productivity estimation, HSI brings some improvements for pre-
dicting composition. Our results also suggest some benefits from
including multitemporal data in estimating vegetation diversity.

In prediction maps based on random forests, spatial variation of
response metrics is underrepresented, which can be seen in regression
lines in observed—-predicted plots (Fig. 6, SI 8). As a result, predicted
metrics tend towards the mean and outliers of, for example, high or low
AGB are not represented. At landscape scale, the loss of extreme values
has no effect on calculated means or sums, and in maps produced by
better-defined models exhibit more spatial variation (e.g. AGB and LAI
maps produced by MSI vs HSI in Fig. 8).

Across responses and datasets, our results are slightly limited by
spatial uncertainty and temporal mismatches. While georeferencing
precision for our data was high (<5 cm), polygon representations of field
plots did not exactly match surveyed plots. These issues are limitations
of the technology at our disposal, but their effects on our results were
likely small, as vegetation plots were not placed at stark borders be-
tween vegetation types. Moreover, while we used two MSI datasets from
different years, we only had HSI for one year. Thus, the potential ben-
efits of multiannual HSI were unexplored. In addition, MSI results
showed that performance can vary with the same sensors (e.g. S R? 0.39
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Table 6

For each response metric, the results of 10 iterations of VSURF variable selection and importance values. Selected variables are listed in order of decreasing importance,
which is expressed, for regression models, as percentage increase in MSE, if that variable is randomly permuted, normalised by the standard deviation of the difference
between MSE with and without permuting. For classification, importance is mean decrease in accuracy. Spectral indices are explained and referenced in SI 1. Variable
names are suffixed by NLS, 20 or 22 for National Land Survey, multispectral 2020 and multispectral 2022 images, respectively, “var” for band variance. Hyperspectral
bands are named by their central wavelength prefixed by “HS”, and first derivatives are suffixed by “D”. Topographic data are digital elevation model (DEM),
topographic wetness index (TWI) and topographic position indices (TPIs).

AGB LAI S H C1 C2 C3 C4 Class
Variable =~ %  Variable %  Variable %  Variable = %  Variable %  Variable %  Variable %  Variable %  Variable %
DEM 28 Ratio22 25 TPI-50 25 RE22var 25 HS1000 30 green20 22 green20 44 DEM 57 DEM 50
blue20 27 NDVI22 24 HS454D 22 TWI 22 HS984 29 greenNLS 19 DEM 34 RE20 38 green20 43
red22 27 RGI22 21 HS973D 20 DEM 21 HS984D 25 D1 18 HS903D 29 PRI_norm 36 HS454D 42
red20 26 blue22 21 HS978D 20 HS903D 19 SR8 23 RI 16 NDRE22 27 green20 32 TWI 32
NDVI22 25 red22 20 DEM 18 TPI-50 18 TPI-10 22 PRI_norm 15 PRI_norm 26 TPI-50 31
Ratio22 25 Ratio20 19 green20 17 SR3 18 HS708D 20 OSAVI2 15 HS454D 23 RE20 29
blue22 24 green22 18 HS935var 16 HS973D 18 NDRE20 15 HS978D 21
Carter 23 NDVI20 18 blueNLS 15 SI.TM 18 HS735D 15 NIRNLS 21
RGI20 23 RGI20 17 CRI2 15 GMI1 17 MTCI 14 D1 19
RGI22 21 NDRE22 17 greenNLS 14 Datt3 17 HS405 14
mREIP 21 HS400 16 Datt3 13 HS735D 15 HS903D 14
red22var 17 RatioNLS 14 TPI-20 13 HS978D 14 MCARI2 13

nir22var 13 SI.TM 12 HS941D 13
NPCI 12 redNLS 11 MCARI2/ 13
OSAVI2
green20 12 blue20 11 RILLTM 13
SRPI 12 SR8 7 HS411 13
PRI_norm 10 mREIP 13
RE20var 5 TPI-20 12
DD 12
mSR705 12
CI 10
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Fig. 6. Relationships between observed and predicted values for regression models built with dataset All. Linear regression estimates between predicted and
observed values with confidence intervals are shown with blue coloured lines while 1:1 lines are drawn with magenta. R%, RMSE and nRMSE values are given, though
note that RMSE and nRMSE values are the same for C1-C4 since their range is 0-1. Regression slopes are consistently <1, indicating that not all variance in responses
is accounted for in the models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and 0.23 for M20 and M22, respectively), so it is feasible that an HSI generally and methodological limitations.
dataset acquired at another point in time would have performed slightly
differently. In the following subsections, we discuss our results in more

detail and in light of previous research for our three categories of 4.1. AGB and LAI
response metrics — productivity, biodiversity and community composi-
tion — separately, and then address both the limited benefits found in HSI Previous studies have found that the accuracy of high-spatial reso-

lution AGB and LAI predictions in low-growth landscapes varies

10
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Table 7
Confusion matrix for random forest classification with dataset All. Presented
numbers are averages over 100 random forest runs, and thus not whole numbers.

Predicted
1 2 3 4 Producer’s
accuracy
Observed 1 15.23 5.78 10.87 6.12 0.40
2 4.95 16.93 5 5.12 0.53
3 4.93 1.00 63.99 5.08 0.85
4 6.81 5.11 4.45 36.63 0.69
User’s 0.48 0.59 0.76 0.69 OA = 0.67
accuracy
Table 8

Fuzzy confusion matrix for classification with dataset All. Presented numbers are
averages over 100 random forest runs.

Predicted
1 2 3 4 Producer’s
accuracy
Observed 1 11.49 7.17 10.86 8.48 0.3
6.12 12.27 5.26 8.36 0.38
11.32 6 48.45  9.22 0.65
7.68 8.42 8.71 28.18 0.53
User’s 0.31 0.36 0.66 0.52 fOA =0.51
accuracy

significantly between PFTs, study areas and used remote sensing
explanatory variables. In one study, R? values for AGB ranged from 28%
for lichens to 78% for deciduous shrubs (Orndahl et al., 2022). In be-
tween are estimates in the range 33-75% (Rasanen et al., 2019a),
36-70% (Rasanen et al., 2021b), 43-62% (Pang et al., 2022) and
50-67% (Rasdnen et al., 2020b). LAI modelling performance has been
similar but it has been assessed in fewer studies (Pang et al., 2022;
Rasanen et al., 2020b). Results for AGB and LAI estimation when not
tied to PFTs are similarly varied, with values ranging 0.60-0.90% in
heath-fen tundra mosaics (Villoslada et al., 2023) and 0.31-0.65 in
tussock tundra (Bratsch et al., 2017). Based on the large ranges for AGB
and LAI prediction accuracy in previous studies, we assume that our
models perform more accurately in some sub-areas and for some PFTs
than others, depending on the vegetation and abiotic factors.

We found that MSI data were the most important for estimating AGB
and LAI though in both, HSI variables were also selected for the final
models but topographic variables were not selected for LAIL Indeed,
traditional greenness measures (red-green index, simple ratio, NDVI)
were the most important predictors (Table 6). Recent studies indicate
that accurate canopy height models could further improve these results
(Cunliffe et al., 2020; Orndahl et al., 2022; Villoslada et al., 2023).
Cunliffe et al. (2020), in particular, achieved remarkably high R? values
of 90% and 92% for estimating aboveground vascular biomass with
CHMs, in stark contrast to 14-23% predictions with NDVI. However,
their tundra site is dominated by tall Salix shrubs and bushes and thus
we would not expect results to directly replicate to lower-vegetation
landscapes. In a later study, Cunliffe et al. (2022) applied a similar
methodology to a range of sites with median R? of 87%. Orndahl et al.
(2022), on the other hand, achieved RMSEs of 3.3-10.5 cm for plant
height estimation using structure-from-motion (SfM) point clouds. In
their study, the ground sampling distance (GSD) for images is < 1 cm.
Noting that the vegetation in our study site is typically lower (mean
dominant height ca. 6 cm) than the upper range of this error, and that
our GSD was higher (7 cm at the lowest), we were unable to produce a
CHM suitable for inclusion in our models (SI 11). Future research could
look to develop improved methods for estimating canopy height in areas
with very low vegetation.

The limited benefits of HSI data in estimating AGB and LAI that we
found echoed results from Arctic peatlands (Pang et al., 2022; Rasanen
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et al., 2020b) and boreal forests (Halme et al., 2019). Pang et al. (2022)
explored optimal spectral resampling of HSI data and found 10-20 nm to
be generally most accurate for detecting peatland vegetation patterns, a
bandwidth closer to those of the MSI sensors than the HSI sensor in our
study. Rasanen et al. (2020b) used a HSI approach with 28 bands in the
500-900 nm range and concluded that HSI provide limited benefits. In
boreal forests, Halme et al. (2019) found that high-resolution (GSD 0.7
m) HSI data performed equally (62%:63%) to lower-resolution (GSD 10
m) MSI in estimating AGB while outperfoming MSI in LAI estimation
(83%:75%). The authors also argued that the increased spectral reso-
lution is more important in improving LAI estimation than increased
spatial resolution.

In our study, AGB and LAI were determined by regression models and
were based on dominant height measurements and visual %-cover es-
timates. The subjectivity of visual estimation may increase uncertainty
in estimating AGB and LAI but general biases are unlikely due to ob-
servations being made by multiple people. Regression models also
underrepresent variance in AGB and LAI, and correspond to true values
better in some PFTs than others (Table 1; Rasanen et al., 2019a). While
this methodology also accounts for high correlations between AGB and
LAI (Table 9, Fig. S.23), it is unlikely to notably change the predictive
accuracy of models, though nRMSE were probably artificially low since
the variance in the metric is smaller than the “real” variance (Rasanen
et al., 2019a).

4.2. Biodiversity metrics

S and H were both best estimated by multitemporal MSI dataset
MMT. That is, the best results were achieved with a dataset other than
All, indicating that variable selection was unable to perform optimally
with the All dataset. This may imply that repeating VSURF for variable
selection leads to redundancy in explanatory variables and reduced
modelling performance in some cases, as the number of selected vari-
ables for S from MMT was only 5 whereas 16 were selected for All, and
the former obtained better results. The large number of selected vari-
ables highlights the difficulty to estimate biodiversity based on plot-
level reflectance mean and variance, and spectral indices, and the
relative interchangeability of many HSI indices.

HSI could hypothetically add potential to estimate biodiversity, since
it can capture more subtle variations in the reflectance spectra than MSI
(Carlson et al., 2007; Fassnacht et al., 2022; McPartland et al., 2019),
and tundra can exhibit greater spectral diversity than MSI can capture
(Nelson et al., 2022). This both does and does not bear out in our study.
On the one hand, HSI variables are prevalent (8/16 and 8/12 for S and
H, respectively) in selected variables from dataset All for biodiversity
models. On the other hand, as noted above, the best-performing models
for both metrics exclude HSI data. This finding is similar to the obser-
vation by Rasanen et al. (2020b) that even though hyperspectral data
can be important according to feature selection they do not markedly
improve model performance.

However, our results did indicate that HSI reduced the importance of
topographic information in biodiversity estimation. While topographic
information was essential for biodiversity metrics with MSI datasets (R?
increase by > 10 pp), benefits from topography were much more limited
for HSI data (3 pp. in both cases). Thus, HSI did improve biodiversity
estimation, but only when topographic information was unavailable.
The relationship between topography and diversity is closely related to
community composition, as some communities are more diverse than
others (Table 4; Nelson et al., 2022; Oksanen and Virtanen, 1995;
Padkko et al., 2018).

In addition to reflectance and first derivatives, our datasets included
plot-level variances in reflectance as a measure of spectral variability,
following the spectral variability hypothesis (McPartland et al., 2019;
Palmer et al., 2002; Wang and Gamon, 2019). The best-performing
dataset (MMT) did not utilize spectral variance variables for S, but for
H, it does (Table S.13)(Table S.13), but for H, the best-performing model
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Fig. 7. Prediction maps for examined plant community metrics: aboveground biomass, leaf area index, species richness, Shannon’s index and community cluster 1-4
membership values. Pictured also a general overview, UAV RGB orthomosaic (Jul 21, 2022), and two discrete clusterisations of the imaged area, the first based on
cluster membership regressions and the second on random forest classification. Classifier votes are mapped in the last row.

(NMMT) does (Table S.14), though these spectral variance variables are
of relatively low importance, losing to topographic and reflectance
variables. In HSI models (Table S.14-S.15), only one spectral variance
variable (at 935 nm in the NIR region) was selected for S, and none for H.
As such, these results provide very limited support for the spectral
variability hypothesis at an ultra-high spatial resolution in oroarctic
tundra. In a similar vein, Fassnacht et al. (2022) have concluded that
spectral variability is often subtle relative to other observable differ-
ences between taxa and the relationship between spectral and species
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diversity in general is unclear. However, future studies could look at the
spectral diversity hypothesis in tundra landscapes across various spatial
scales.

4.3. Fuzzy community clusters

4.3.1. Cluster membership regression
Model performance for fuzzy community cluster regression was
mixed (R? 0.29-0.53) and, particularly for the lowest-R? cluster 1, quite
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Table 9
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Correlation matrix for plant community characteristics: aboveground biomass, leaf area index, species richness, Shannon’s index and community cluster 1-4 mem-
berships and random forest classification vote shares. The lower left triangle contains Pearson correlation coefficients for metric values at field plots, while upper-right-
triangle values are calculated across prediction maps. V1-V4 signify relative vote shares from random forest classifier.

Across predictions

AGB LAI s H c1 c2 c3 ca v V2 v3 V4
Across observations  AGB 0.91 0.46 0.38 0.25 0.33 ~054 032 0.14 0.16 ~038 027
LAI 0.87 0.42 0.39 0.32 0.30 ~0.46 027 0.19 0.14 —028 013
S 0.17 0.24 0.66 0.26 0.55 —0.66 0.22 0.26 0.54 —-0.59 0.25
H 0.00 0.16 0.77 0.28 0.61 ~065  0.20 0.21 0.49 ~051 020
a1 0.07 0.17 0.27 0.23 0.30 ~024 006 039 0.12 013 -015
c2 0.08 0.10 0.48 0.57 0.02 —063 021 0.30 0.48 ~050 014
c3 025 027 061  -056  -045 0.1 ~049 028  -0.40 072 ~0.45
ca 0.33 0.22 0.32 0.20 ~019 013 ~0.60 ~022 0.9 0.53 0.69
V1 0.03 0.19 0.23 0.17 0.40 0.00 019 010 0.02 027 026
V2 0.10 0.14 0.47 0.45 0.13 0.51 ~040  0.03 0.02 059  —0.03
V3 ~032  -032  -056  -048  -019 048  0.67 ~043 027  —059 —0.72
va 0.32 0.18 0.22 0.17 ~010 023 ~0.43 058 026  —0.03  -0.66
Aboveground
biomass (g/m2) Leaf area index Species richness Shannon's index
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Fig. 8. Maps of productivity and biodiversity metrics produced by datasets M22T and HST; that is, by MSI and topographic data on the top row and by HSI and

topographic data on the bottom.

poor. At the same time, cluster membership values for clusters 1 and 2
were the only metrics where HSI data improved results >5 pp. (10 pp. in
C1 and 6 pp. when fused with MSI in dataset All for C2). Previous studies
in treeless landscapes have found similarly large discrepancies in the
modelling of different plant communities, with estimation accuracy
ranging 0.16-0.82 in northern peatlands (Pang et al., 2022; Rasanen
et al., 2019b, 2020a), 0.26-0.79 in sub-alpine peatlands (Feilhauer
et al., 2021), and 0.25-0.69 in a temperate wetland (Rapinel et al.,
2018). Our results fell within the lower ranges of these previous studies,
but particularly good predictions were absent and most cluster mem-
bership R? values were under 0.5, with the exception of C3 at 0.53.
Including topographic information consistently improved community
cluster estimation by 2-35 pp., which corresponds to the previous
determination of topography as key to community composition in tun-
dra landscapes (Oksanen and Virtanen, 1995). As with biodiversity
metrics, this improvement was smaller for HSI than for MSI. Higher
spatial resolution data outperformed the lowest-resolution NLS dataset.
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In part, this may be explained by spectral properties, but sensor details
for these images are unavailable. Finally, in the case of C1 and C2,
single-year MSI datasets M20T or M22T outperformed multitemporal
MSI dataset MMT, of which every variable in M22T and M20T is part by
3 pp., showing again that variable selection can notably change model
performance.

Differentiation between plant community clusters must also be
examined in terms of the community clusters themselves. The most
poorly predicted C1 is also the most broadly defined when examined in
the ordination space (Fig. S.1) and represents the wettest conditions.
Conditions in the spatially limited moist areas (streambeds) in the study
site differ from the dominant dry shrub heaths, but also among them-
selves. As a result, our data may not comprehensively represent these
distinct areas within the study site and better prediction results might be
obtained with a clustering based on a dataset with better representation
of moist conditions. Furthermore, the strongest indicator species for C1
was V. uliginosum, a close relative of V. myrtillus, an indicator for C2,
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which may have caused confusion between the two spectrally similar
clusters (Lang et al., 2002). In general, however, we found that HSI
improved prediction in moist areas (C1 and C2), and elsewhere, HSI has
been found to be sensitive to moisture (Rehman et al., 2020). The in-
clusion of short-wave infrared (SWIR) data for better moisture analysis
could improve these results (Kim et al., 2015; McPartland et al., 2019),
though none of the available moisture indices, whether spectral or
topographic, was chosen as predictors for the moist clusters in our study.

4.3.2. Cluster classification

Differences between classification models were relatively small (OA
0.46-0.67 and fOA 0.39-0.53). Topographic data alone performed
better than most spectral-only datasets, with the exception of M20.
Maximum OA was only 0.08 greater than topography-only OA, and fOA
only 0.04 greater. There was no clear difference in performance between
MSI and HSI datasets. Confusion matrices (Tables 7-8, SI 10) show that
cluster 3 was predicted with notably higher accuracy than the others,
and for cluster 1 both producer’s and user’s accuracies were below 0.5
(with dataset All).

In previous research, a common approach has been to classify tundra
vegetation by dominant species: Kupkova et al. (2023) classified alpine
grassland tundra with accuracies of 48-100% with a similar data-fusion
multispectral and hyperspectral approach as ours; Thomson et al. (2021)
classified High Arctic species at 47-88% with HSI; Yang et al. (2020)
classified dominant species at 46-100% in a mainly shrubby tundra
setting using RGB and thermal images, and UAV-born spectrometer
measurements. Our accuracies of 40-85% were slightly lower, and we
did not classify by dominant species but unsupervised floristically
defined clusters of co-occurent species.

4.4. Hyperspectral data

In principle, HSI data should contain all the same and more infor-
mation as MSI data, particularly since the GSD was similar in our case. In
a review on UAV-platform remote sensing, Nex et al. (2022) found that
HSI usually outperforms MSI in complex analysis, e.g. tree species
classification, and the two perform similarly when the bands that are
used coincide. Why, then, did our HSI models not regularly outperform
MSI ones?

One possibility is that narrowband (hyperspectral) vegetation and
soil indices as employed here are not able to capture the same properties
as the broadband indices. For example, when NDVI is calculated for HSI,
this index uses single narrow HSI red and NIR bands, while MSI NDVI
uses broad red and NIR bands that cover larger parts of the reflectance
spectra. However, resampling HSI data to match MSI data did not
improve performance, and both models that used spectrally resampled
HSI, with and without topographic data (HM and HMT), were less ac-
curate than those with original spectral resolution (HS and HST) for all
metrics. HM and HMT models were also less accurate than single-year
MSI models for all metrics except C2, where HM outperformed both
M20 and M22, S, where HM outperformed M22, and C1, where HMT
outperformed M22T. Indeed, spectral resampling may have resulted in
increased noise relative to MSI while reducing informating relative to
HSI. In the case where the spectrally resampled HM model outperformed
single-year MSI models M20 and M22 (metric C2), this result was not
repeated when topographic data was included (i.e., HMT and M22T). In
spectral resampling, we assumed a Gaussian response, and while uti-
lising a calibrated spectral response curve might have improved results,
any improvements would likely have been small, since the difference in
response curves is likely small (Cao et al., 2020).

Other explanations for poor HSI performance may be found in data
acquisition or processing. Data processing for HSI is more complex than
for MSI due to the large number of bands, pushbroom imaging tech-
nology and radiometric corrections that have to be made to obtain
reflectance values (Nex et al., 2022). This means that HSI is more prone
to error or processing-introduced noise, as well as being spatially less
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robust than MSI. Thus, benefitting from the properties of HSI relative to
MSI may require optimising imaging conditions and processing pipe-
lines. In some studies, HSI data representation is customised based on
the acquired data and dimensionality is reduced based on, for example,
minimum noise fractions (Hall and Lara, 2022; Kupkova et al., 2023;
Luo et al., 2016). Conversely, dimensionality could be further increased
by computing, for example, normalised difference indices between all
pairwise combinations (}) of bands, which would add >6000 variables
with our HSI. Here, in contrast, we combined bands only based on a
priori spectral index definitions and to coincide with our MSI sensor, and
in principle, a key benefit to random forests and other machine learning
algorithms should be their ability to extract relevant information from
complex data. While Hall and Lara (2022) produced encouraging results
from dimension-reduced HSI, these were not reproduced by Kupkova
et al. (2023) who obtained approximately similar results for both UAV
MSI and HSI.

Finally, hyperspectral data may better serve mapping tasks that de-
mand a high-spectral-resolution analysis, for example estimating spe-
cific pigment content or other biochemical properties that have
explicitly spectral characteristics. For example, Liu et al. (2023) recently
estimated foliar photosynthetic capacity and other biochemical traits
from HSI with reasonable to good results (R? 0.38-0.6), while Peanu-
saha et al. (2024) estimated leaf nitrogen content with spectrometer-
derived VIs with R? 0-0.48. However, Lu et al. (2019) found only very
slight benefits from hyperspectral data in estimating leaf chlorophyll
content relative to VNIR MSI (R2 0.80 vs 0.81). In Arctic contexts,
biochemical traits have rarely been explicitly examined, in part due to
logistical constraints (Beamish et al., 2020). Weighing these and our
results, it is not obvious that HSI would perform better if response
metrics were more strictly spectrally defined, but the possibility merits
future research.

5. Conclusions

We conducted a unique and broad investigation on the relative
utility of close-range hyperspectral and multispectral imaging as well as
topographic data for mapping of natural plant communities in oroartic
tundra. We showed that random forests built on close-range MSI, HSI
and topographic remote sensing data estimate tundra plant community
properties — AGB, LAI, species richness, Shannon’s entropy, fuzzy
community clusters — with moderate accuracy (R?> 0.29-0.65). Espe-
cially, AGB (0.60) and LAI (0.65) were well-estimated with multispec-
tral datasets and traditional greenness measures. Biodiversity metrics
were best estimated with multitemporal multispectral and topographic
data (species richness 0.53 and Shannon’s entropy 0.46). Modelling
plant communities was more convoluted and some community clusters
were more accurately predicted than others (R2 0.29-0.53, classification
OA 0.67). In this case, E. nigrum ssp. hermaphroditum (C3, 0.53) or
C. vulgaris (C4, 0.45) dominated communities were modelled with the
highest accuracy. These evergreen shrubs were both abundant and
dominant in their respective communities, in addition to which they
were found in dry areas, both factors that may have influenced esti-
mation accuracy. Our model performance results question the utility of
HSI data for these applications and assert that MSI and topographic data
are often sufficient in practical applications. While HSI variables gained
high importance in variable selection, this did not translate into better
performance in most models that included topographic data. The ex-
ceptions were the more moist community clusters 1 and 2, which got
limited (up to 10 pp) boosts from HSI data, but were also the most poorly
estimated metrics. Nevertheless, when comparing models with pre-
dictors calculated only from spectral and not from topographic data, HSI
typically outperformed MSI. Generally, more refined approaches in
processing and representing spectral data, as well as variable selection,
may lead to stronger predictions and greater advantages from HSI.
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