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A B S T R A C T   

Although generally given little attention in vegetation studies, ground-dwelling (terricolous) lichens are major 
contributors to overall carbon and nitrogen cycling, albedo, biodiversity and biomass in many high-latitude 
ecosystems. Changes in biomass of mat-forming pale lichens have the potential to affect vegetation, fauna, 
climate and human activities including reindeer husbandry. Lichens have a complex spectral signature and 
terricolous lichens have limited growth height, often growing in mixtures with taller vegetation. This has, so far, 
prevented the development of remote sensing techniques to accurately assess lichen biomass, which would be a 
powerful tool in ecosystem and ecological research and rangeland management. We present a Landsat based 
remote sensing model developed using deep neural networks, trained with 8914 field records of lichen volume 
collected for >20 years. In contrast to earlier proposed machine learning and regression methods for lichens, our 
model exploited the ability of neural networks to handle mixed spatial resolution input. We trained candidate 
models using input of 1 × 1 (30 × 30 m) and 3 × 3 Landsat pixels based on 7 reflective bands and 3 indices, 
combined with a 10 m spatial resolution digital elevation model. We normalised elevation data locally for each 
plot to remove the region-specific variation, while maintaining informative local variation in topography. The 
final model predicted lichen volume in an evaluation set (n = 159) reaching an R2 of 0.57. NDVI and elevation 
were the most important predictors, followed by the green band. Even with moderate tree cover density, the 
model was efficient, offering a considerable improvement compared to earlier methods based on specific 
reflectance. The model was in principle trained on data from Scandinavia, but when applied to sites in North 
America and Russia, the predictions of the model corresponded well with our visual interpretations of lichen 
abundance. We also accurately quantified a recent historic (35 years) change in lichen abundance in northern 
Norway. This new method enables further spatial and temporal studies of variation and changes in lichen 
biomass related to multiple research questions as well as rangeland management and economic and cultural 
ecosystem services. Combined with information on changes in drivers such as climate, land use and management, 
and air pollution, our model can be used to provide accurate estimates of ecosystem changes and to improve 
vegetation-climate models by including pale lichens.   
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1. Introduction 

1.1. Background 

While satellite-based methods for remote sensing of green vascular 
plants have been the most important source for monitoring global 
environmental change (e.g. Myneni et al., 1997; Gould, 2000; Piao et al., 
2020; Ryu et al., 2019), reliable methods for lichens have been elusive 
(Falldorf et al., 2014; Nordberg and Allard, 2002). Lichens are symbiotic 
associations of fungi and algae and/or cyanobacteria characterized by 
low requirements of nutrient and low growth rates that enable them to 
pioneer in the colonization of exposed surfaces (Cutler, 2010). They can 
remain prominent in later succession stages, it is calculated that 6–8% of 
the Earth land surface is covered and dominated by lichens (Crittenden, 
2000; Larson, 1987), and they may colonize nearly all terrestrial habi-
tats while being functionally important in many ecosystems (Kappen, 
1988). Especially in Arctic, alpine, boreal and dryland ecosystems li-
chens are major contributors to overall carbon and nitrogen cycling, 
biodiversity and biomass (Cutler, 2010; Elbert et al., 2012). 

Terricolous (ground-dwelling) fruticose lichens, typically forming 
10–20 cm thick mats in undisturbed regions, have the potential to be the 
dominating growth form in Arctic and alpine tundra, in open boreal 
forests, and on the drier parts of peatlands (Ahti and Hepburn, 1967; 
Joly et al., 2009; Rautiainen et al., 2007; Tømmervik et al., 2012). Their 
role as a vital winter food resource for reindeer/caribou (Rangifer tar-
andus, hereafter Rangifer) makes them economically and culturally 
important in areas with semi-domestic or wild populations of Rangifer 
(Joly et al., 2009; Riseth et al., 2016). Due to their wide distribution in 
the Arctic and boreal regions of Eurasia and North America, the area 
covered by reindeer husbandry alone amounts to some four million 
square kilometres (Jernsletten and Klokov, 2002; Tømmervik et al., 
2012). Rangifer have impact on climate through their modification of 
vegetation structure by trampling and selective grazing (Cohen et al., 
2013; Collins et al., 2011; Joly et al., 2010; Tømmervik et al., 2004). 

While green plants have a relatively distinct reflective signal in the 
red and near- infrared bands of the light spectrum, lichens have 
considerably complex spectral signatures (Rees, 2004; Solheim et al., 
2000). Notably, terricolous lichens consist of species both with melan-
ised dark surfaces and pale surfaces with no or little melanin (Gauslaa, 
1984), and these often grow in mixtures. Light reflectance properties are 
also affected by thallus humidity (Granlund et al., 2018) and growth 
form (crustose, foliose or fruticose). Another complicating factor is that 
terricolous lichens have limited growth height (maximum 25 cm), and 
they often grow in communities with a mixed cover of lichens, bryo-
phytes and taller vascular plants, especially graminoids, shrubs and 
trees, that can partly shade lichens or hide them from optical sensors 
(Fraser et al., 2014; Tømmervik et al., 2004). Remote sensing assessment 
methods of lichen abundance should therefore ideally be able to detect 
lichens despite noise from varying vegetation structures. Simple arith-
metic equations based on satellite reflectance values are typically sen-
sitive to that type of noise (Nordberg and Allard, 2002), hence such 
methods should be used with caution, limiting their applicability to 
specific areas or habitats. This is for example the case with the Lichen 
Volume Estimator (LVE) model developed for pale lichens by Falldorf 
et al. (2014) and later applied by Rickbeil et al. (2017) and Macander 
et al. (2018). 

Recently, methods to detect pale terricolous lichens based on ma-
chine learning have started to emerge (Fraser et al., 2021; He et al., 
2021; Jozdani et al., 2021; Kennedy et al., 2020; Macander et al., 2020). 
Artificial intelligence-based approaches have several benefits since the 
combined information from all included bands are used without any a 
priori assumptions on their relationship to lichen reflectance. The blunt 
naivety of such an uninformed approach, compared to the more 
informed decisions when constructing a traditional equation, pays off in 
the ability to find context-dependent relationships (Brodrick et al., 
2019). This allows detection algorithms of the lichen signal to vary 

across the landscape, for example along gradients from open tundra to 
boreal taiga. In this way, the approach resembles the ability of the 
human brain to distinguish a relevant signal despite different types of 
noise (Fraser et al., 2021; Jozdani et al., 2021), however with the po-
tential to process a large number of bands (Kennedy et al., 2020). In 
addition to reflectance, it is possible to include any additional rasterised 
data, such as elevation, emphasising the potential of artificial intelli-
gence to efficiently combine different types of geographical information 
to solve complex remote sensing tasks (Fraser et al., 2021; Jozdani et al., 
2021; Kennedy et al., 2020). 

Jozdani et al. (2021) and Fraser et al. (2021) investigated the ability 
to train computers on extremely high-resolution (< 3.5 cm) images 
taken with unmanned aerial vehicles (drones) and changed scale to 
high-resolution satellites (0.5–6 m). While the method of Jozdani et al. 
(2021) was limited to a binary classification of terricolous lichens in 
general; Fraser et al. (2021) assessed the ability of a random forest 
model to quantify cover of pale, fruticose lichens of the genus Cladonia, 
reaching R2 values from 0.07 to 0.49 for the Planet satellites, and 0.52 to 
0.70 for the World View satellites, both at 6 m resolution. Although both 
studies showed the versatility and promising aspects of machine 
learning techniques to scale from local to regional scope, high resolution 
images are still often expensive, tend to have a limited availability, and 
low coverage or number of spectral bands. Not least, they have a very 
limited historical record, making such images unsuitable for long-term 
studies, and inapplicable with field records that are more than a few 
years old. 

In contrast, Kennedy et al. (2020) presented a promising methodol-
ogy using deep learning to train a neural network for assessment of 
lichen cover based on Landsat images, elevation data and climatic pa-
rameters. Kennedy et al. (2020) assessed pale lichen cover at three 
different high-latitude sites spanning the North American continent, 
achieving R2 values ranging from 0.27 to 0.55. This is a pioneering 
application of AI to remote sensing of terrestrial lichen cover, demon-
strating the high potential of the technique. However, correlation co-
efficients were rather low in several areas, while lichen cover remains a 
rather crude measurement of actual lichen biomass. Although biomass is 
a function of cover and thickness, the correlation with cover is non- 
linear and highly sensitive to reindeer grazing pressure. In particular, 
when lichens are recovering after prolonged grazing, the cover can be 
substantial while the biomass is still very low due to rapid horizontal 
expansion from numerous lichen fragments while vertical growth is a 
slower process (Klein and Shulski, 2009). Thus volume is a more rele-
vant ecological measure since it is closely correlated to biomass (Moen 
et al., 2007; Tømmervik et al., 2004; Tømmervik et al., 2012). Biomass is 
also socioeconomically relevant for reindeer herding and hunting-based 
communities as it quantifies the amount of food available for Rangifer, 
and lichen biomass can affect the ability of other vegetation to establish, 
since thick lichen mats can prevent vascular plant seeds from reaching 
the soil (Sedia and Ehrenfeld, 2003; Tømmervik et al., 2009). Further-
more, modellers of global ecosystem dynamics typically rely on biomass 
rather than cover. In addition, a thick layer of pale lichens would have a 
higher albedo compared to a thinner layer with the same cover, 
potentially affecting local climate (Stoy et al., 2012). However, while 
lichen cover can efficiently be obtained by using, for example, aerial 
photos or drone images, large datasets with lichen volume are tedious to 
collect since the thickness of the lichen cover must be measured in the 
field. As field data collection of representative lichen volumes is time- 
consuming and expensive, an accurate remote sensing model for esti-
mation of lichen volumes would be a powerful tool in ecological 
research and rangeland management. 

1.2. Objectives 

We assembled a data set of 8914 field records collected over a period 
of 23 years from both open and forested lichen habitats covering a 
gradient from no or negligible grazing conditions to high-grazing 
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conditions. This dataset was used to address the following objectives: (1) 
To develop and evaluate a neural network-based method for assessment 
of pale lichen volume relying solely on reflectance and topography data 
and apply the model in selected circumpolar sites to evaluate the general 
validity of the model. (2) To test the ability of the model to detect a 
documented long-term change in lichen abundance. 

2. Methods 

We trained neural networks with Landsat images and ground-truth 
data collected over 20 years in northern Scandinavia and the Kola 
peninsula. In contrast to earlier proposed methods, we did not restrict 
the input data to single pixel values only, but exploited the ability of 
neural networks to handle mixed resolution input. 

Although it is technically possible to feed virtually any type of 
geographic information to our neural network, we wanted to reduce 
complexity and limited the input data to Landsat reflectance and 
elevation data, since those datasets are easily retrievable and in high 
spatial resolution. To be able to utilise the historical records of Landsat 
images we only used bands that are similar across the Landsat 5, 7 and 8 
satellites, allowing the method to be applied back to the 1980s. 

2.1. Lichen abundance data 

The ground-truth data we retrieved originated from different moni-
toring projects undertaken in Norway, Sweden, Finland and the Kola 
peninsula, Russia (Table 1, Fig. 1), and therefore, they are subject to 
some variation in methods and within-plot sampling regimes. The dis-
tribution of plots within sampling sites varied as well from random to 
systematic transects, depending on the original purpose of the sampling. 
All samples were based on 1 m2 field plots except the data from Finland 
which was sampled from 0.25 m2. Values from fields plots that fell 
within the 30 m Landsat pixel size, were averaged (2–5 depending on 
area) and used as single values for training, evaluation and testing. A 
special case was made for the plots from west Finnmark that were 
located 50 m apart. Those plots were used as individual plots for 
training, to maintain a larger training set, but the mean was used for 
testing as the mean value, although sampled from adjacent Landsat 
pixels, more accurately reflected the general lichen biomass within the 
target pixel. All plots (n = 8914) were standardised to volume in litres 
(dm3) per m2 of pale terricolous fruticose lichens mainly belonging to 
the two genera Cladonia and Flavocetraria. In 21 plots, lichen cover was 

>100% reaching a maximum of 126% because of 2–3 layers of different 
lichen species, where the upper layers shade the lower ones. Vegetation 
cover measurements summing to over 100% are common in vegetation 
studies (Fehmi, 2010), and those records did not result in outlier volume 
measurements. Table S2 provides an overview of the main types of 
vegetation covered by the AI analysis in this study, following the 
concept developed by Fremstad (1997), which relies on ecological gra-
dients in moisture, nutrient availability, soil type, topography, and 
climate. These types are dwarf shrub and lichen heaths, bilberry-lichen 
heath, alpine heather-lichen heath, lichen-birch woodland, lichen-pine 
woodland, and lichen-rich bog with heather and dwarf shrub. 

Both a training and a validation set are needed to train neural net-
works. For an unbiased test of the model performance, an independent 
test set is also needed. We therefore randomly divided the dataset into 3 
datasets: training (n = 3290, 73%), validation (n = 1054, 23%) and test 
(n = 159, 4%). Spatially overlapping records (within 300 m clusters) 
were allowed in the training and validation set, but plots that were 
closer than 300 m were removed from the test set in order not to bias the 
results (regarding the distance, see discussion below).For the test set, 
averaged values were used for multiple data points collected within a 
single or adjacent Landsat pixel. 

We also rendered a ‘remote’ dataset, to investigate if boosting the 
training set with remotely assessed data could improve the models. 
Across an area of 280 km2 in Central Norway, we classified a total area of 
6.3 km2 into 4 land-cover types based on lichen abundance through 
visual interpretation of aerial photography (0.5 m resolution). The cat-
egories were: a) vascular plants without lichens, b) bare ground with 
negligible amounts of lichens, c) intermediate lichen cover, d) lichen- 
dominated vegetation. Within the classified areas, we randomly 
placed 1734 points to which we assigned values for lichen cover and 
height corresponding to the average empirical values we measured in 
the field at comparable sites. To render variation within the assigned 
values, they were randomly picked from a class-specific distribution. 
The remotely assessed dataset was solely used as training data. 

2.2. Image acquisition and pre-processing 

The workflow described below is also graphically presented in a 
methodological flowchart (Fig. 2). 

2.2.1. Satellite images 
Atmospherically corrected surface reflectance Landsat collection 1, 

Table 1 
Size of datasets used for training. Data points with high lichen volume were heavily underrepresented and therefore repeated in the training set to achieve a more even 
distribution (numbers given within parentheses).  

Set Finnmark Hardanger Røros Nikel 
(RUS) 

Teriberka Väster- Andøya Lapland Forolhogna Sogn Remote data 

(NO) (NO) (NO) Pasvik 
(NO) 

(RUS) botten 
(SE) 

(NO) (FIN) (NO) (NO) (NO)  

825 
(+177)             

1382 
(+903)          

Core data   207 
(+856)             

9             
24 (+66)             

884 
(+283)             

49 (+4)             
303 
(+94)    

Mixed sources         65 (+153)    
19 82 1 2  17    475 

(+544)  
Remotely 

assessed           
1734 
(+6449)  
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Tier 1 images (Landsat 5, 7 or 8 depending on availability, U.S. 
Geological Survey) were acquired using Google Earth Engine (Gorelick 
et al., 2017). For each field site and year that data was recorded, a 
collection of all images taken between July 1st and August 31st was 
masked for clouds, cloud shadows and snow using the embedded quality 
assessment band (CFMASK-derived, see Foga et al., 2017). A composite 
was then formed using median values. In some years and locations, 
clouds completely prevented the compilation of a useful composite. In 
those cases, we instead used composite from the closest possible adja-
cent year with enough coverage (Table 2). An alternative method to 
handle atmospheric noise and other distortions is to use composites 
averaged from multiple years. However, this method is sensitive to 
vegetation changes between years. We decided not to use multi-year 
averages, since reindeer grazing impact in some of the field sites often 
vary considerably between years. Hence, multi-year averages would 
possibly add, and not reduce, noise. 

In addition to the 7 bands that Landsat 5, 7 and 8 have in common, 
we included 3 normalised differentiated indices that have been used in 
previous efforts to sense lichens remotely: Normalised Differentiated 
Vegetation Index (NDVI, Tucker, 1979, bands: NIR and red), ND Lichen 
Index (NDLI, Nordberg, 1998, bands: SWIR1 and green), and ND 
Moisture Index (NDMI, Wilson and Sader, 2002, bands: NIR and SWIR1). 
All pixel values were scaled to 8-bit values (0–255) in Google Earth 
Engine prior to export to facilitate an accurate conversion from Tag 
Image File Format (TIFF) to 8-bit Portable Network Graphics (PNG), 
which was the image file format supported by the artificial intelligence 
platform (Peltarion AB, Stockholm, Sweden) used in this study. For the 
scaling, the highest recorded reflectance value (0.4785) occurring in our 
training set was used as 255. Since the normalised indices range between 
− 1 and + 1, those values were stretched to values between 0 and 255 
separately. 

2.2.2. Elevation 
Terricolous fruticose lichens at northern latitudes have the capability 

to form large mats from sea level to mountain summits, with the same 
species being abundant along the entire bioclimatic gradient (Critten-
den, 2000; Hein et al., 2021; Tømmervik et al., 2009). Hence, altitude 
per se has a limited effect on lichen growth in the areas covered by this 
study and the study sites with the highest lichen abundance were found 

in upland areas with little reindeer grazing and low impacts of other 
land-use activities. Since this was largely an effect of variation in extent 
of reindeer husbandry, rather than in ecological processes relevant for 
lichen growth, there was a risk that absolute altitude could be exploited 
by the neural network to identify an artificial relationship between 
altitude and lichen abundance, limiting the generality of the model. 
However, local topography variation has strong impact on snow accu-
mulation, which in turn can affect reindeer access to lichen forage re-
sources (Tømmervik et al., 2012). By normalising the elevation data for 
each plot, we removed the region-specific variation, while maintaining 
informative local variation in topography. (The regional minimum value 
within a square of 3870 m (387 pixels) was subtracted from all pixels, 
resulting in elevation models ranging from 0 to the locally highest 
point.). 

Elevation data was either acquired from the Arctic Digital Elevation 
Model (2 m resolution, Porter et al., 2018) or, for Norwegian sites, a 2 m 
resolution digital elevation model produced by the Norwegian Mapping 
Authority (“Kartverkets digitale terrengmodell”). The resolution was 
reduced to 10 m × 10 m using Google Earth Engine and default settings 
(NN: nearest neighbour). All images were exported as GeoTIFF raster 
files in the format of their local Universal Transversal Mercator (UTM) 
zone. 

2.3. Raster handling 

During the exploratory phase of the method development, we 
experimented with different cropping sizes of the input rasters before we 
settled on 90 × 90 m. While for all applications (maps) of the model we 
used a 90 × 90 m cropping straight away, the rasters for the training and 
test data were constructed using a larger crop size of 129 Landsat pixels. 

For each Landsat-derived raster and data point, we cropped a square 
of 3870 × 3870 m (Landsat: 129 × 129 px, elevation data: 387 × 387 px) 
with the sampling coordinate in the centre. If 11% or more of the area 
was masked due to clouds, the data point was dropped entirely. Other-
wise, any masked pixels were assigned with the mean value of the 
unmasked pixels as this could be assumed to render least noise for the 
artificial intelligence modelling. Rasters were handled in R (R Core 
Team, 2020) using packages raster (Hijmans and van Etten, 2012), terra 
(Hijmans, 2021), sp (Bivand et al., 2013) and sf (Pebesma, 2018). 

Fig. 1. Map of the field plots used to train and test the deep neural network. Plots within a 1 km distance from each other was aggregated for readability. For sample 
sizes, see Table 1. 
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Fig. 2. Methodological flow chart. Field work steps are shown with green background, while processing in Google Earth Engine, R, and the Peltarion AI-platform are shown in blue, beige, and red backgrounds, 
respectively. In Google Earth Engine, we compiled cloud-free median composites of all 1st tier surface reflectance Landsat images taken between 1st July and 31st August. We extracted the 7 bands that are in common 
for Landsat 5, 7 and 8 and calculated three spectral indices. Field records within pixel distance were averaged, resulting in the discrepancy between number of actual filed records and training/validation sets. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2.4. Structuring of data for training neural network models 

We subdivided the datasets into 3 different categories (Table 1). The 
Core dataset consisted of data collected in the field by one or several of 
the authors or closely affiliated monitoring programs. The Mixed sources 
dataset was retrieved from external collaborators and collected 
following more diverse methods and with different levels of detail). The 
Remote dataset was compiled from aerial photos as described above. 

We transferred 112 data points from the core dataset to the mixed 
sources dataset (Table 1), because these plots had comparatively high 
lichen volume-to-cover ratios (thick but patchy lichen cover, which 
occasionally occurs in forested systems with little reindeer grazing but 
high competition from shrubs) and could potentially add noise rather 
than contribute to an efficient training. 

For each area where a dataset was collected, we randomly assigned 
80% of the data for training and 20% for validation. Prior to this divi-
sion, to avoid spatial overlap between training and evaluation sets, all 
data points that fell within a 300 m radius of any other point were 
grouped into clusters. In the assignment to the different set classes, 
training and evaluation points were never drawn from the same spatial 
clusters. 

Before we trained the neural networks, we also extracted a random 
test-set from the Core training set. This set was completely removed 
prior to any training, including evaluation during training. To avoid 
spatial overlap between the test and the training data, the points in the 
test set were not allowed to come from the same spatial cluster as any 
data points in the training or validation set (similarly to the division of 
the training and test set). A recent debate has emerged regarding the 
implications of spatial autocorrelation when validating spatial pre-
dictions (Ploton et al., 2020; Wadoux et al., 2021). On the one hand, 
Ploton et al. (2020) argue that test data should be spatially independent 
from the training data. To test the spatial dependency, they propose to 
use variogram analysis to find out a threshold distance after which there 
is little spatial autocorrelation in the response variable. They suggest 
using such spatial cross-validation techniques in which test data points 
are not located within the spatial threshold distance from each training 
data point. On the other hand, Wadoux et al. (2021) argue that a random 
selection of points for evaluation should be used instead of spatial or 
traditional cross-validation, and that spatial cross-validation methods 
result in overly pessimistic assessment of model fit. 

To assess the influence of spatial autocorrelation of our data set, we 
ran a spatial random forest analysis to analyse how well the lichen 
biomass in the test set could be predicted solely with the distance be-
tween data points (Hengl et al., 2018). To assess the scale of spatial 
autocorrelation, we constructed a variogram following the method 
described in Ploton et al. (2020). A distance sufficient to effectively 
handle the inherent spatial autocorrelation of the data set (at least 43 
km, as indicated by a variogram analysis Supplementary Fig. S4) would 
render training impossible as it results in to few clusters per study site. 
The choice of clustering distance is a trade-off between spatial inde-
pendence and having training sets in all study areas. Given that we were 
unable to compensate for the spatial autocorrelation, we settled for a 
clustering distance of 300 m to achieve a practical number of clusters 
while maintaining a minimum of spatial partitioning. 

Data points with high lichen volumes were heavily under- 
represented. This can be problematic since each iteration of the 
training works with a subset of the complete training data, and a skewed 
representation of records is likely to result in few or no records of under- 
represented values in many training iterations. In our case, this would 

result in biased models that were not sufficiently trained to predict high 
lichen volumes. A way to limit this effect is to repeat less represented 
values in the training set and artificially achieve a more even distribu-
tion. We binned the values into 19 volume bins of equal intervals and 
repeated values in the training set belonging to the 17 highest categories 
(repeating values from 25 to 140 dm3/m2) up to a maximum of 600 
times (Fig. S1). Those values were repeated as is, without any additional 
noise. 

2.5. Training of neural network models 

After exploratory testing, we chose a model architecture (Fig. 3) that 
was used in all models. Landsat pixels (30 m) and elevation pixels (10 m) 
were given separate inputs due to the difference in spatial resolution. In 
addition to input values of a single Landsat pixel (1 × 1 Landsat +3 × 3 
elevation), we also included an input of 3 × 3 Landsat pixels (9 × 9 
elevation pixels, Fig. 3). The models were trained using a batch-size of 
128, Adam optimizer, learning rate of 0.0005 and patience of 20. The 
final model discussed in detail below was trained for 33 epochs, 
reaching a plateau after 7 epochs. Epoch 13 was ranked best according 
to the training platform and thus used in the subsequent analyses. 

2.6. Model evaluation 

To evaluate model fit, we fitted a linear model with the empirical 
lichen volume of the test set as explanatory variable and the AI-model 
output as the response variable to test the fit of each candidate model. 
The candidate models were compared based on intercept, coefficient of 
determination (R2), p-values and Root mean square error (RMSE). The 
R2 value we present is based on the comparison between the predicted 
lichen volume and the empirical field measurement. For the sake of 
comparison, however, we also present the R2 value derived from the 
linear regression, as this method might have been used in previous 
studies. To compare our model with the LVE (Falldorf et al., 2014) we 
applied the algorithm using Google Earth Engine on the same Landsat 
composites that we used for the AI analysis. We also calculated Bias and 
Mean Absolute Error (MAE) using the Metrics package (Hamner and 
Frasco, 2018) and R2 using the MLmetrics package (Yan, 2016). 

Hengl et al. (2018) suggest that random forest can be used as a 
generic framework for spatial interpolation and to test to what degree 
the response variable is spatially autocorrelated. Following their 
method, we constructed a random forest (150 trees) with measured 
lichen volume as the dependent variable and buffer distance from other 
plots as independent variable (Hengl et al., 2018). 

2.7. Importance of variables 

One downside of deep neural networks is that the training process 
essentially is a black box offering little insight compared to more 
traditional methods, and the model gives no straight forward co-
efficients for the different predictors. Therefore, we did a permutation 
test to evaluate the explanatory contribution of each predictor variable. 
The idea is to compare how the model efficiency is affected when one of 
the input variables is permuted (randomly shuffled among the data 
points). A small decrease in model efficiency indicates that the permuted 
predictor contributes little to the predictive power of the model, and vice 
versa. We made 11 copies of the original data set, one for each predictor 
(7 bands, 3 indices and elevation), and permuted the input rasters for a 
single predictor in each copy. The resulting 11 runs (one for each pre-
dictor variable) were then compared to the output of the original test set, 
using the Nash–Sutcliffe model efficiency coefficient (Nash and Sutcliffe, 
1970; Zambrano-Bigiarini, 2020). 

2.8. Applicability 

The Finnmark region in northern Norway has experienced a 

Table 2 
Table over the test data set.  

Finnmark 
(NO) 

Hardanger 
(NO) 

Nikel (RUS) 
Pasvik (NO) 

Røros 
(NO) 

Västerbotten 
(SE) 

13 108 1 6 31  
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Fig. 3. The architecture of the deep neural network. Upper red boxes are input nodes. The lower red box is the output. Figures below boxes indicate the size of output 
tensors. Figures within boxes are kernel sizes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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considerable reduction in lichen abundance since the 1980s (Tømmervik 
et al., 2009). To test if the model could accurately detect changes in 
lichen abundance over time, we created a grid of points (240 m between 
point) covering the Kautokeino reindeer winter grazing area (5400 km2) 
and applied the model based on 2 Landsat mosaics from 1984 to 1985 
and 2020–2021 respectively. We interpolated the values between the 
gridded points and masked water bodies based on NIR pixel values 
(threshold = 90) in the original Landsat mosaics. 

To evaluate if the model produced reasonable results in areas that 
were not used for training, we also applied the model to two sites in 
Canada and Russia, with a grid resolution of 120 m, and interpolating 
the values between. (For the Canadian site we used the Canadian Digital 
Elevation Model from Natural Resources Canada). We also applied the 
model in native Landsat resolution to two smaller areas in Norway to 
illustrate how the model responded to bright rocks and sand. 

3. Results 

When applied to the test set (n = 159), all models described a positive 
relationship between predicted values and empirical field measure-
ments. The models were capable of detecting volumes as low as 1 dm3/ 
m2 and as high as 100 dm3/m2 in heaths, tundra and open pine and birch 
forests. Applying the Lichen Volume Estimate algorithm (Falldorf et al., 
2014) to our test set rendered an R2 of 0.17 (RMSE = 12.31 dm3/m2, n =
158, df = 1, p < 0.01). In the evaluation of spatial autocorrelation, the 
random forest model explaining measured lichen volume based on dis-
tances between plots (to evaluate the influence of spatial autocorrela-
tion) reached a R2 = 0.33 (RMSE = 15.1 dm3/m2). 

3.1. Candidate model training 

The use of different training sets (Table 1) affected the goodness of fit 
and variation explained by the candidate AI models with R2 ranging 
from 0.53 to 0.57 and RMSE from 9.95 to 11.24 dm3/m2 (Table 3, 
Fig. 4). The model based on all available training data (Core + Mixed- 
sources) performed similarly as compared to the model trained with 
the core subset alone (Table 3). However, the model based on the Core 
and Mixed-sources had an intercept value of 4.05 compared to 5.64 in 

the Core set, (pintercept > 0.16). Including the “remote” dataset (derived 
from aerial photos) in the training resulted in lower RMSE, but the 
highest intercept value (9.95). We considered the model trained on the 
Core + Mixed-sources as the best, based on the lowest intercept, highest 
regression score and lowest mean absolute error (See Table 4). This is 
the model subject for all following analyses, mapped estimations and the 
discussion. 

3.2. Permutation test 

The full model had a Model Efficiency (ME) of 0.55. We ran 70 
complete permutation iterations and calculated the mean ME. There was 
a sequential decrease in mean explanatory value (absolute change in 
ME) from the most important predictor variable, NDVI (ΔME = 0.13), to 
the least important, TIR (ΔME = 0), showing no drastic shifts across the 
range (Fig. 5). Elevation and the Green band was the second and third 
most important variables, whereas NDMI and the Red band was the 2nd 
and 3rd least important. For some predictors, the effect of the permu-
tations varied considerably between iterations as indicated by the 
comparably large standard deviation (SDGreen: 0.07, SDElevation: 0.05, 
SDNIR:0.05). The TIR, however, was constantly uninformative (SD =
0.01). 

3.3. Applying the best candidate model to circumpolar sites 

The model was applied to test sites in Quebec, Canada and the 
eastern Kola Peninsula, Russia (Fig. 6). Although we did not have 
ground-truth data from the sites outside of the Nordic countries and the 
western Kola Peninsula to evaluate the accuracy of the model, the pre-
dictions of the model corresponded well with our visual interpretations 
of lichen abundance using images on Google Earth, and literature 
confirm that these regions are rich in lichens. Visual comparisons 
against high-resolution aerial photos in Norway confirmed that the 
model performed well, detecting high lichen abundance in sparse Scots 
pine (Pinus sylverstris) tree forest stands (Supplementary Fig. S2). 

However, when applied to sandy areas or human infrastructure, the 
model was unable to distinguish some bright surfaces from lichens and 
produced incorrect high estimations of lichens (Supplementary Fig. S3a, 

Table 3 
Table over the years field data was collected and what year the corresponding satellite image used for remote sensing was acquired. Satellite images originating from a 
different year than the field data was used when satellite coverage for the correct year was too patchy. Those instances are marked with * and the year of the used 
image.  

Sample 
year 

Finnmark 
(NO) 

Hardanger 
(NO) 

Røros 
(NO) 

Nikel (RUS) 
Pasvik (NO) 

Teriberka 
(RUS) 

Västerbotten 
(SE) 

Andøya 
(NO) 

Lapland 
(FIN) 

Forolhogna 
(NO) 

Sogn 
(NO) 

1998 1998          
1999 1999          
2000  2003*  2000  2000   2000  
2001  2003*    2001     
2002      2002     
2003  2003         
2004  2003*         
2005 2005 2003*         
2006           
2007           
2008     2008      
2009       2009    
2010 2010          
2011           
2012           
2013 2013          
2014           
2015       2015    
2016           
2017          2018* 
2018 2018      2018   2018 
2019          2019 
2020   2020     2020, 

2019*  
2020, 
2019*  
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an industrial site and sandy river sides in North Norway). 

3.4. Time series analysis 

The model detected that lichen abundance halved between 1984 and 
2020, both in mean lichen volume per m2 (1984: 23.1 ± 14.45 dm3/m2, 
2020: 11.9 ± 7.14 dm3/m2) and in total volume for the whole 

Kautokeino area (1984: 116 million cubic meters, 2020: 60 million cubic 
meters, Fig. 7). The decrease was particularly visible near the reindeer 
fence along the Finnish-Norwegian border where the striking contrast 
between the thicker lichen layers on the Norwegian side and the scarcer 
lichen vegetation on the Finnish side decreased considerably during the 
period (Fig. 8). 

4. Discussion 

We assessed pale lichen volume using neural networks trained on 
Landsat satellite images and elevation data. By the use of artificial in-
telligence, we have here developed models that rendered considerably 
better fit than the method developed by Falldorf et al. (2014) did against 
field-based measurements. 

In general, all candidate models managed to predict lichen volume 
up to 100 dm3/m2 with high statistical significance (p < 0.001) and R2 

values over 0.53. The predictive power of the models was high, given the 
results of Räsänen and Virtanen (2019) and Virtanen and Ek (2014) who 
concluded that at least 5 m spatial resolution is required for accurate 
vegetation mapping in treeless northern ecosystems. However, all of the 
models tended to overestimate lichen volume at low values, as indicated 
by the intercept values. Model outputs for areas with low lichen abun-
dance are therefore likely to result in some overestimations. The model 
did also underestimate highest volumes (indicated by a slope lower than 
1), and the general accuracy for higher lichen volumes was lower. This is 
probably largely an effect of the training dataset having comparably few 
data points with high lichen volumes and that the repetition of high 
values could not entirely compensate for this. However, it could also be 
related to a decreasing difference between plots with varying thickness, 
but consistently high cover over a certain level. Although our experience 
from fieldwork is that the thickness of lichen cover has a major impact 
on the reflected light, satellites, in a strict sense, are only able to register 
surface properties. If the difference between plots with varying lichen 
thickness is becoming less pronounced with increasing cover, there is 
likely a saturation threshold where remote sensing methods become less 

Fig. 4. The performance of the three candidate models predicting empirical lichen volume in plots that were new to the deep neural network. The three models were 
trained with datasets of increasing size: a) solely the core data set, b) The core set as well as a data set from mixed sources, c) The core, mixed and remotely assessed 
data set. 

Table 4 
Performance of lichen volume candidate models.  

Model Intercept Slope p R2 Regr.R2 Bias MAE RMSE 

Trained with Core data 5.64 0.82 <0.001 0.55 0.64 − 3.66 8.21 11.20 
Trained with Core and Mixed sources 4.05 0.84 <0.001 0.57 0.65 − 2.33 7.50 11.24 
Trained with Core and Remotely assessed 8.02 0.68 <0.001 0.53 0.60 − 4.48 9.77 9.95 

RMSE = Root Mean Square Error, MAE = Mean Absolute Error, Regr.R2 = Regression R2, see text for details. 

Fig. 5. Model efficiency as a function of each predictor being permuted 
(deprived of its explanatory value through random shuffling). Bars indicate 
mean change in efficiency (error bars are standard deviation). The red line 
marks the model efficiency of the un-permuted model. The bigger the decrease 
compared to the red bar, the more the predictor variable contributes to the 
model. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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accurate or unable to efficiently quantify differences in high lichen 
biomass. This kind of problem is not new to remote sensing, a parallel 
example is the issues with accurate remote sensing of biomass in forests 
(Lu et al., 2016). More high cover datapoints would be needed to assess 
this effect and improve the model. 

The inclusion of additional training data sets did not considerably 
affect the model performance (Table 3), but the intercept value 
improved (i.e. got closer to zero) by including the mixed sources dataset. 
The opposite happened when including the remotely assessed lichen 
volumes, which increased the intercept value. Altogether, this suggests 
that these additional datasets did not provide any information of 
fundamental value to the training process. While the mixed-sources 
dataset potentially resulted in more noise due to the variable quality 
of input data, the remotely assessed data points represented clear cate-
gories that likely did not introduce any new information to the training. 
This method, as we implemented it, did not provide an alternative to the 
time-consuming collection of empirical data in the field. Given the na-
ture of neural networks, the current model can continuously be trained 
with new field data. 

There was spatial autocorrelation in the field measured lichen data, 
and the test set was not spatially independent from the training set. 

Earlier, Ploton et al. (2020) argued that spatial dependency between 
training and test set might lead to overestimates of model fit. However, 
the example of Ploton et al. (2020) represented an extreme case, since 
their model predicting aboveground forest biomass in Africa, in addition 
to 9 satellite bands, included 27 explanatory factors with strong inherent 
spatial autocorrelation (e.g. precipitation, temperature, absolute eleva-
tion, solar radiation). On the contrary, our model did not include any 
climatic or similar explanatory variables with strong patterns across 
pixels, which likely makes our modelling less sensitive to bias from 
spatial autocorrelation. This is further supported by the fact that the 
random forest model that used distances from other plots as the 
explanatory variables to explain lichen biomass (following Hengl et al., 
2018) had notably lower explanatory capacity (R2 = 0.33) than our 
neural network models (R2 0.53–0.57). Wadoux et al. (2021) showed 
that a random K-fold cross-validation is appropriate for systematic 
random and simple random sample designs. However, our randomly 
selected test set is likely not able to compensate for the spatial distri-
bution and autocorrelation of our data, and the test statistics can be 
suspected to be somewhat inflated. A tendency that is likely amplified by 
the fact that datapoints from Hardangervidda form a dominating part of 
the dataset. This is a consequence of the data not being collected with 

Fig. 6. The model applied to an area in Canada (Côte-Nord, Quebec) and Russia (Eastern Kola Peninsula, Lovozero, Murmansk). The pale yellow and grey areas in 
the Landsat composite are areas covered with lichens, while green areas are dominated by vascular plants, primarily shrubs and graminoids. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the current application in mind, but for different local studies and 
monitoring programs. Although desirable, a simple random or system-
atic random field sampling would demand a large investment in terms of 
money and time which was beyond our financial capacity. 

4.1. Predictive power of the explanatory factors 

The permutation test showed that NDVI was the predictor with the 
strongest explanatory capacity, closely followed by regional elevation 
(Fig. 5). The importance of NDVI differed strongly from the results of 
Kennedy et al. (2020), where NDVI had a very low explanatory value, 
while elevation turned out as the by far most important predictor. 
However, there are some differences in the elevation input that can be 
critical when comparing the role of topography in the two studies. 
Kennedy et al. (2020) used absolute altitude while our model applies 
locally normalised elevation. While topography is likely to be important, 
lichens are not limited by elevation per se (Crittenden, 2000). However, 
if altitude and lichen abundance differed considerably between study 
sites, a neural network could infer an elevation signal that represents 
regional differences (for example in Rangifer grazing regime) rather than 
an actual effect of topography. This can result in an artificially boosted 
predictive power in the training regions at the cost of general applica-
bility. Locally normalised elevation values, on the other hand, remove 
altitudinal differences between study sites, while keeping the effect of 
local topography structure. In this regard, our elevation input was likely 
more comparable to the aspect and slope predictors used by Kennedy 
et al. (2020) which were the 5th and 8th most important predictors in 
their model. An important difference, however, is that Kennedy et al. 
(2020) used elevation data with the same spatial resolution as the sat-
ellite imagery, while we used a higher spatial resolution (10 m) 
providing 9 elevation pixels per reflectance pixel (30 m). This way we 
did not need to calculate separate values for aspect or slope as the neural 
network could derive such information directly from the data. Our single 

elevation input, hence, comprises the elevation, aspect and slope inputs 
of the model of Kennedy et al. (2020). Yet, despite a higher explanatory 
potential (more pixels provided), elevation had a lower explanatory 
capacity in our model compared to Kennedy et al. (2020). This, com-
bined with the relatively lower predictive power of aspect and slope in 
their study, could be an indication that the model of Kennedy et al. 
(2020) may rely too much on regional differences in absolute altitude. 

The predictive power of the green band (3rd most important) varied 
the most between iterations. The high variation suggests that certain 
combinations of the green band and other explanatory variables have a 
disproportional influence on the predictions. This would then also be the 
case, to a decreasing extent, for Elevation, NIR and NDLI. 

The bands red, green, NIR and SWIR1 are all used in the calculation 
of the normalised indices. This could cloud the interpretation of their 
importance, since the model could, to some extent, compensate for the 
permutation of one of them by using the information in the corre-
sponding index, and vice versa. The three indices diverge in this aspect. 
The most important variable, NDVI, is based on NIR and the red band, 
none of which turned out particularly informative. NDMI on the other 
hand, was less informative than its components NIR and SWIR1, while 
NDLI, and its components green and the SWIR1, ended up in the middle. 
Since the permutation test did not include correlation between vari-
ables, it is likely that the importance of less correlated predictors (e.g. 
elevation) are somewhat exaggerated. 

The thermal band, TIR, could be expected to hold little to no infor-
mation, and the results confirm this. The band could hence be excluded 
in further development of the model, but fills the function of a reference 
variable for the others to be compared against. 

Temperature and precipitation were among the 4 most important 
predictors in the model of Kennedy et al. (2020). We deliberately 
excluded these variables to keep our model a strict remote sensing 
product, and we believe that the general applicability of our model is 
higher because of this choice. In addition to the increased simplicity, the 

Fig. 7. The model applied to Landsat images from 1984 and 2020, respectively, over the winter reindeer grazing area of Kautokeino, north Norway. The model 
detected that lichen abundance halved during the period, both in mean lichen volume per m2, and total lichen volume. The results are in line with the results of 
previous estimations based on field records. The outlined areas in the south-western corner are shown in greater detail in Fig. 8. 
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fact that our model relied more on reflectance features is likely an 
advantage when applied to areas with homogeneous topography, for 
example lichen tundra or lichen-dominated shrub tundra at lower 
altitudes. 

4.2. Applicability 

Our results showed that our model was efficient in assessing pale 
lichen volume in ecosystems with moderate tree cover density, thereby 
offering a considerable improvement compared to earlier methods based 
on specific reflectance, for example the LVE equation by Falldorf et al. 
(2014). Furthermore, we observed that LVE, which is supposed to be 
applicable to open lichen heaths and lichen tundra, worked poorly on 
our evaluation set. Further, LVE cannot measure volumes higher than 
60 dm3/m2, while our method has a theoretical limit of 130 dm3/m2 

(maximum value in the training set), although no plots over 90 dm3 

appeared in our random evaluation set. Our method detected even small 
volumes of lichens in lichen tundra, dry heaths, and even in sparsely 
wooded forests. However, areas with bright sand, such as river sides, 
was falsely assessed as lichen rich This means that model, although 
producing realistic results in our test applications, should be used with 
caution in areas with bare sand or artificially bright features and such 
larger areas should be masked out using a landcover map or visual 
classification. In future iterations of the model, specific training to 
improve the ability to distinguish sand and buildings from lichens 
should be a priority. Although the model correctly assessed low lichen 
abundance in a mosaic of dwarf shrub-lichen heath and bare bright bed 
rock with a scarce cover of fruticose lichens (Supplementary Fig. S3b), 

we cannot rule out that bright bedrocks could result in overestimated 
lichen volumes as well. Furthermore it remains unexplored how the 
model would perform in estimation of lichen volume in forests with a 
denser canopy cover. From a reindeer herder perspective, dense forests 
are not the most important source for winter forage, as lichen volumes 
tend to decline with increasing tree crown density (Forbes et al., 2019). 
Thus, in economic and socio-cultural perspective, it is not so critical that 
the model has not yet been tested on datasets from dense forests. 

Given that the training data was sampled in areas where lichens do 
occur to some extent (Table S2), we have not formally tested the 
applicability of the model in other vegetation types. Our results, when 
applying the model to larger areas, indicates that the model is fairly 
robust as it did not predict high lichen volume in areas where lichens 
clearly were absent. Although assessment of potentially lichen rich areas 
are of primary interest, the applicability of the model in other vegetation 
types is also important. It is possible that the model returns less reliable 
assessments in vegetation types that we have not investigated, and 
model output should therefore be manually investigated, especially if 
applied to vegetation types that were not covered by our study. 

The results from the comparison between 1984 and 2020 in the 
Kautokeino winter grazing area in North Norway fitted well with the 
results reported by Tømmervik et al. (2009). Our results confirm the 
possible use of the Landsat catalogue of historical images (back to the 
launch of Landsat 5). The clear difference between years is an indication 
of the importance of the spectral bands for the model output, since the 
same topography input was used in 1984 and 2020 and hence remained 
constant across the years. The detected change over time confirms that 
although topography was the second most important explanatory 

Fig. 8. Modelled lichen volume in two sections along the fenced Finnish-Norwegian border in 1984 and 2020 (for location, see Fig. 7). The fence (dotted line) does 
not strictly follow the border, and was partly moved during the period. (Both detailed sections have the model applied to all pixels, hence no interpolation.) 
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variable, the model is not overinterpreting topography, but using 
topography in combination with the spectral information. The ability of 
the model to accurately assess historical changes, also confirms that the 
model is generally applicable using older images than the collections 
that were used for training. 

The historical comparison also puts the problem with overestimation 
of lichen abundance in lichen free areas in perspective. Although the 
model had a tendency to assign moderately high lichen abundance in 
some lichen free areas, it was still sensitive to the drastic decrease in 
Kautokeino winter grazing area where large areas became virtually 
lichen free. This shows that the model, despite some inaccuracies in 
lichen free areas, is able to detect relative changes. However, when used 
for absolute assessments in low-lichen areas, it should be combined with 
control measurements, preferably in the field. 

The consistency between the model output and our visual interpre-
tation, when we applied the model on landscape-scale across different 
areas in North America and Russia, suggests that the model performs 
consistently across regions and continents. Although we lack ground- 
truth data to verify that the accuracy is consistent outside our field 
sites, we find those results promising, opening up for circumpolar 
investigation and monitoring of lichen volume. Together with the 
models ability to detect lichen in sparsely forested areas (Fig. S2), 
potentially also in areas with mosaics of shrubs and trees. This is a major 
improvement compared to the LVE, which was originally only intended 
for use in exposed lichen heaths and lichen tundra (Falldorf et al., 2014) 
and therefore having a more limited regional applicability. 

Our results confirm that neural networks are useful in complex 
remote sensing tasks. But contrary to the results of Kennedy et al. (2020) 
and Jozdani et al. (2021) our best model achieved higher accuracy with 
fewer explanatory variables; hence delimiting the input data re-
quirements to elevation and the bands that Landsat 5, 7 and 8 have in 
common, i.e. datasets that are easily retrievable and do not rely on any 
environmental assumptions or weather data. In addition, our method 
appears to be robust for direct volume estimations of lichens over vast 
areas. The cropping of satellite images is however a time-consuming 
process for larger areas, and hence we applied the model on a lower 
spatial resolution (120–140 m) than the native 30 m Landsat resolution, 
an limited more detailed assessments to the specific areas along the 
Finnish-Norwegian border and the examples in the supplementary data. 
Preliminary analyses of Tveraa et al. (unpublished data) showed that 
change from 120 and 240 resolution had a limited effect on total lichen 
volume assessment, but high computational load could still be a limi-
tation for mapping over larger areas if higher resolution is needed. More 
efficient raster cropping, or implementation of the model directly in 
Google Earth Engine, have the potential to improve high spatial reso-
lution processing in large scale studies. 

To summarize, volume is arguably a more ecologically and socially 
relevant metric of lichen abundance than cover, as several field-based 
studies have confirmed a close relationship between volume and 
biomass of terricolous fruticose lichens. The ability to remotely assess 
lichen volume, combined with the long historical catalogue of Landsat 
images, enables spatial and temporal studies of variation and changes in 
lichen biomass related to multiple research questions. The approach we 
have developed can be used to predict the quality of lichen pastures for 
Rangifer and, ultimately, facilitate and improve Rangifer habitat and 
population management (Rickbeil et al., 2017; Tømmervik et al., 2012). 
Combined with information on changes in drivers, for example climate, 
land use and management, and air pollution, the model can be used to 
provide estimates of environmental changes, as well as ecosystem ser-
vices (Riseth et al., 2016; Stoy et al., 2012). Finally, as current 
vegetation-climate models typically disregard lichen abundance (Ellis, 
2019), our lichen volume model may help to improve vegetation- 
climate models by facilitating continental-scale assessments of ground- 
lichen volumes. 
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